Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Fish in the wild often contend with complex flows that are produced by natural and artificial structures. Research into fish interactions with turbulence often investigates metrics such as turbulent kinetic energy (TKE) or fish positional location, with less focus on the specific interactions between vortex organization and body swimming kinematics. Here, we compared the swimming kinematics of rainbow trout (Oncorhynchus mykiss) holding station in flows produced by two different 3×5 cylinder arrays. We systematically utilized computational fluid dynamics to identify one array that produced a Kármán vortex street with high vortex periodicity (KVS array) and another that produced low periodicity, similar to a parallel vortex street (PVS array), both validated with particle image velocimetry. The only difference in swimming kinematics between cylinder arrays was an increased tail beat amplitude in the KVS array. In both cylinder arrays, the tail beat frequency decreased and snout amplitude increased compared with the freestream. The center of mass amplitude was greater in the PVS array than in only the freestream, however, suggesting some buffeting of the body by the fluid. Notably, we did not observe Kármán gaiting in the KVS array as in previous studies. We hypothesize that this is because (1) vorticity was dissipated in the region where fish held station or (2) vortices were in-line rather than staggered. These results are the first to quantify the kinematics and behavior of fishes swimming in the wake of multiple cylinder arrays, which has important implications for biomechanics, fluid dynamics and fisheries management.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Tidal creeks play a vital role in influencing geospatial evolution and marsh ecological communities in coastal landscapes. However, evaluating the geospatial characteristics of numerous creeks across a site and understanding their ecological relationships pose significant challenges due to the labor-intensive nature of manual delineation from imagery. Traditional methods rely on manual annotation in GIS interfaces, which is slow and tedious. This study explores the application of Attention-based Dense U-Net (ADU-Net), a deep learning image segmentation model, for automatically classifying creek pixels in high-resolution (0.5 m) orthorectified aerial imagery in coastal Georgia, USA. We observed that ADU-Net achieved an outstanding F1 score of 0.98 in identifying creek pixels, demonstrating its ability in tidal creek mapping. The study highlights the potential of deep learning models for automated tidal creek mapping, opening avenues for future investigations into the role of creeks in marshes’ response to environmental changes.more » « less
-
Abstract The fate of coastal ecosystems depends on their ability to keep pace with sea-level rise—yet projections of accretion widely ignore effects of engineering fauna. Here, we quantify effects of the mussel , Geukensia demissa , on southeastern US saltmarsh accretion. Multi-season and -tidal stage surveys, in combination with field experiments, reveal that deposition is 2.8-10.7-times greater on mussel aggregations than any other marsh location. Our Delft-3D-BIVALVES model further predicts that mussels drive substantial changes to both the magnitude (±<0.1 cm·yr −1 ) and spatial patterning of accretion at marsh domain scales. We explore the validity of model predictions with a multi-year creekshed mussel manipulation of >200,000 mussels and find that this faunal engineer drives far greater changes to relative marsh accretion rates than predicted (±>0.4 cm·yr −1 ). Thus, we highlight an urgent need for empirical, experimental, and modeling work to resolve the importance of faunal engineers in directly and indirectly modifying the persistence of coastal ecosystems globally.more » « less
-
U.S. coastal economies and communities are facing an unprecedented and growing number of impacts to coastal ecosystems including beach and fishery closures, harmful algal blooms, loss of critical habitat, as well as shoreline damage. This paper synthesizes our present understanding of the dynamics of human and ecosystem health in coastal systems with a focus on the need to better understand nearshore physical process interactions with coastal pollutants and ecosystems (e.g. fate and transport, circulation, depositional environment, climate change). It is organized around two major topical areas and six subtopic areas: 1) Identifying and mitigating coastal pollutants, including fecal pollution, nutrients and harmful algal blooms, and microplastics; and 2) Resilient coastal ecosystems, which focuses on coastal fisheries, shellfish and natural and nature-based features (NNBF). Societal needs and the tools and technologies needed to address them are discussed for each subtopic. Recommendations for scientific research, observations, community engagement, and policies aim to help prioritize future research and investments. A better understanding of coastal physical processes and interactions with coastal pollutants and resilient ecosystems (e.g. fate and transport, circulation, depositional environment, climate change) is a critical need. Other research recommendations include the need to quantify potential threats to human and ecosystem health through accurate risk assessments and to quantify the resulting hazard risk reduction of natural and nature-based features; improve pollutant and ecosystem impacts forecasting by integrating frequent and new data points into existing and novel models; collect environmental data to calibrate and validate models to predict future impacts on coastal ecosystems and their evolution due to anthropogenic stressors (land-based pollution, overfishing, coastal development), climate change, and sea level rise; and develop lower cost and rapid response tools to help coastal managers better respond to pollutant and ecosystem threats.more » « less
-
Abstract Salt marshes are dynamic systems able to laterally expand, contract, and vertically accrete in response to sea level rise. Here, we present the grand challenges that need to be addressed to fully characterize marsh morphodynamics. The review focuses on physical processes and quantitative models. Without predictive models, it is impossible to determine the future marsh evolution under accelerated sea level rise. In these models, one of the challenges is to resolve both horizontal and vertical dynamics within the same framework. Vertically, the marsh has to accumulate enough material to contrast rising water levels. Horizontally, marsh erosion at the ocean side must be compensated by landward expansion in forests, lawns, and agricultural fields. The dynamics of the marsh‐upland boundary are still not fully understood and will require more research in the upcoming years. The complexity of marsh vegetation is seldom captured in predictive models of marsh evolution. More research is needed to understand the effects of each species or species assemblages on hydrodynamics and sediment transport. Here, we further advocate that a sediment budget resolving all sediment fluxes in a marsh complex is the most important metric of marsh resilience. Characterization of these fluxes will enable to connect salt marshes to other landforms and to unravel feedbacks controlling the evolution of the entire coastal system. Current models of marsh evolution rely on sparse data sets collected at few locations. Novel remote sensing techniques will provide high‐resolution spatial data that will inform a new generation of computer models.more » « less
An official website of the United States government
