skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cao, Da"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lead halide perovskites have recently attracted intensive attention as competitive alternative candidates of legacy compound materials CdTe, CdZnTe, and TlBr for high sensitivity energy‐resolving gamma‐ray detection at room temperature. However, the use of lead in these lead halide perovskites, which is necessary for increasing the stopping power of gamma radiation, poses a serious environmental concern due to the high toxicity of lead. In this regard, environmental‐friendly perovskite‐based gamma‐ray detector materials with key energy‐resolving capabilities are highly desired. Here, the gamma energy‐resolving performance of a new class of all‐inorganic and lead‐free Cs2AgBiBr6double perovskite single crystals (SCs) is reported. Two types of Cs2AgBiBr6SCs, prepared by Bi‐normal and Bi‐poor precursor solutions, respectively, have been grown. Their mobilities and response to gamma radiation are presented. Density of trap states in Bi‐poor Cs2AgBiBr6SCs (2.65 × 109 cm−3) is one order of magnitude lower than that in Bi‐normal Cs2AgBiBr6SCs (3.85 × 1010 cm−3). Using laser‐induced photocurrent measurements, the obtained mobility–lifetime (μ–τ) product in Bi‐poor Cs2AgBiBr6SCs is 1.47 × 10−3 cm2 V−1, indicating their great potentials for gamma‐ray detection. Further, the fabricated detector based on Bi‐poor Cs2AgBiBr6SC shows response to 59.5 keV gamma‐ray with an energy resolution of 13.91%. 
    more » « less