Abstract Compared to halides Cs2HfX6(X = Cl, Br, I) with a vacancy‐ordered cubic double perovskite structure, the halide Cs2HfF6(CHF), with a hexagonal Bravais lattice, possesses a higher mass density and chemical stability for radiation detection. Luminescence properties and energy transfer mechanisms of rare‐earths‐doped CHF materials are studied here. The structure of CHF is identified as a new type of vacancy‐ordered hexagonal perovskite, with the same type of building blocks of the double perovskite but stacked with single layers. Density‐functional theory calculations reveal a large bandgap of CHF. A broad emission is observed from the pristine CHF host, which is suggested to be associated with self‐trapped excitons (STEs). A series of rare‐earths‐doped materials are designed utilizing the STE emissions, and efficient energy transfers from STEs and Tb3+to Eu3+are achieved for tunable emissions. The codoped material shows stable emission under X‐ray irradiation, with 10.2% reduction from its initial emission intensity, associated with possible structural evolution by radiation‐induced deformation of the soft host. The radiation responses of singly and codoped materials are evaluated, and the codoped material is found to be more sensitive to the radiation energy than the singly doped or pristine CHF for radiation detection.
more »
« less
Gamma‐Ray Detection Using Bi‐Poor Cs 2 AgBiBr 6 Double Perovskite Single Crystals
Abstract Lead halide perovskites have recently attracted intensive attention as competitive alternative candidates of legacy compound materials CdTe, CdZnTe, and TlBr for high sensitivity energy‐resolving gamma‐ray detection at room temperature. However, the use of lead in these lead halide perovskites, which is necessary for increasing the stopping power of gamma radiation, poses a serious environmental concern due to the high toxicity of lead. In this regard, environmental‐friendly perovskite‐based gamma‐ray detector materials with key energy‐resolving capabilities are highly desired. Here, the gamma energy‐resolving performance of a new class of all‐inorganic and lead‐free Cs2AgBiBr6double perovskite single crystals (SCs) is reported. Two types of Cs2AgBiBr6SCs, prepared by Bi‐normal and Bi‐poor precursor solutions, respectively, have been grown. Their mobilities and response to gamma radiation are presented. Density of trap states in Bi‐poor Cs2AgBiBr6SCs (2.65 × 109 cm−3) is one order of magnitude lower than that in Bi‐normal Cs2AgBiBr6SCs (3.85 × 1010 cm−3). Using laser‐induced photocurrent measurements, the obtained mobility–lifetime (μ–τ) product in Bi‐poor Cs2AgBiBr6SCs is 1.47 × 10−3 cm2 V−1, indicating their great potentials for gamma‐ray detection. Further, the fabricated detector based on Bi‐poor Cs2AgBiBr6SC shows response to 59.5 keV gamma‐ray with an energy resolution of 13.91%.
more »
« less
- Award ID(s):
- 1936527
- PAR ID:
- 10452762
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 9
- Issue:
- 8
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Halide perovskites are revolutionizing the renewable energy sector owing to their high photovoltaic efficiency, low manufacturing cost, and flexibility. Their remarkable mobility and long carrier lifetime are also valuable for information technology, but fundamental challenges like poor stability under an electric field prevent realistic applications of halide perovskites in electronics. Here, it is discovered that valleytronics is a promising route to leverage the advantages of halide perovskites and derivatives for information storage and processing. The synthesized all‐inorganic lead‐free perovskite derivative, Cs3Bi2I9, exhibits strong light–matter interaction and parity‐dependent optically addressable valley degree of freedom. Robust optical helicity in all odd‐layer‐number crystals with inversion symmetry breaking is observed, indicating excitonic coherence extending well beyond 11 layers. The excellent optical and valley properties of Cs3Bi2I9arise from the unique parallel bands, according to first principles calculations. This discovery points to new materials design principles for scalable valleytronic devices and demonstrates the promise of perovskite derivatives beyond energy applications.more » « less
-
Sn‐based perovskites are promising Pb‐free photovoltaic materials with an ideal 1.3 eV bandgap. However, to date, Sn‐based thin film perovskite solar cells have yielded relatively low power conversion efficiencies (PCEs). This is traced to their poor photophysical properties (i.e., short diffusion lengths (<30 nm) and two orders of magnitude higher defect densities) than Pb‐based systems. Herein, it is revealed that melt‐synthesized cesium tin iodide (CsSnI3) ingots containing high‐quality large single crystal (SC) grains transcend these fundamental limitations. Through detailed optical spectroscopy, their inherently superior properties are uncovered, with bulk carrier lifetimes reaching 6.6 ns, doping concentrations of around 4.5 × 1017cm−3, and minority‐carrier diffusion lengths approaching 1 µm, as compared to their polycrystalline counterparts having ≈54 ps, ≈9.2 × 1018cm−3, and ≈16 nm, respectively. CsSnI3SCs also exhibit very low surface recombination velocity of ≈2 × 103cm s−1, similar to Pb‐based perovskites. Importantly, these key parameters are comparable to high‐performance p‐type photovoltaic materials (e.g., InP crystals). The findings predict a PCE of ≈23% for optimized CsSnI3SCs solar cells, highlighting their great potential.more » « less
-
Air‐stable p‐type SnF2:Cs2SnI6with a bandgap of 1.6 eV has been demonstrated as a promising material for Pb‐free halide perovskite solar cells. Crystalline Cs2SnI6phase is obtained with CsI, SnI2, and SnF2salts in gamma‐butyrolactone solvent, but not with dimethyl sulfoxide andN,N‐dimethylformamide solvents. Cs2SnI6is found to be stable for at least 1000 h at 100 °C when dark annealed in nitrogen atmosphere. In this study, Cs2SnI6has been used in a superstrate n–i–p planar device structure enabled by a spin‐coated absorber thickness of ≈2 μm on a chemical bath deposited Zn(O,S) electron transport layer. The best device power conversion efficiency reported here is 5.18% withVOCof 0.81 V, 9.28 mA cm−2JSC, and 68% fill factor. The dark saturation current and diode ideality factor are estimated as 1.5 × 10−3 mA cm−2and 2.18, respectively. The devices exhibit a highVOCdeficit and low short‐circuit current density due to high bulk and interface recombination. Device efficiency can be expected to increase with improvement in material and interface quality, charge transport, and device engineering.more » « less
-
Abstract Two critical limitations of organic–inorganic lead halide perovskite materials for solar cells are their poor stability in humid environments and inclusion of toxic lead. In this study, high‐throughput density functional theory (DFT) methods are used to computationally model and screen 1845 halide perovskites in search of new materials without these limitations that are promising for solar cell applications. This study focuses on finding materials that are comprised of nontoxic elements, stable in a humid operating environment, and have an optimal bandgap for one of single junction, tandem Si‐perovskite, or quantum dot–based solar cells. Single junction materials are also screened on predicted single junction photovoltaic (PV) efficiencies exceeding 22.7%, which is the current highest reported PV efficiency for halide perovskites. Generally, these methods qualitatively reproduce the properties of known promising nontoxic halide perovskites that are either experimentally evaluated or predicted from theory. From a set of 1845 materials, 15 materials pass all screening criteria for single junction cell applications, 13 of which are not previously investigated, such as (CH3NH3)0.75Cs0.25SnI3, ((NH2)2CH)Ag0.5Sb0.5Br3, CsMn0.875Fe0.125I3, ((CH3)2NH2)Ag0.5Bi0.5I3, and ((NH2)2CH)0.5Rb0.5SnI3. These materials, together with others predicted in this study, may be promising candidate materials for stable, highly efficient, and nontoxic perovskite‐based solar cells.more » « less