Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Due to the scarcity of reliable anomaly labels, recent anomaly detection methods leveraging noisy auto-generated labels either select clean samples or refurbish noisy labels. However, both approaches struggle due to the unique properties of anomalies.Sample selectionoften fails to separate sufficiently many clean anomaly samples from noisy ones, whilelabel refurbishmenterroneously refurbishesmarginalclean samples. To overcome these limitations, we design Unity, thefirstlearning from noisy labels (LNL) approach for anomaly detection that elegantly leverages the merits of both sample selection and label refurbishment to iteratively prepare a diverse clean sample set for network training. Unity uses a pair of deep anomaly networks to collaboratively select samples with clean labels based on prediction agreement, followed by a disagreement resolution mechanism to capture marginal samples with clean labels. Thereafter, Unity utilizes unique properties of anomalies to design an anomaly-centric contrastive learning strategy that accurately refurbishes the remaining noisy labels. The resulting set, composed ofselected and refurbishedclean samples, will be used to train the anomaly networks in the next training round. Our experimental study on 10 real-world benchmark datasets demonstrates that Unity consistently outperforms state-of-the-art LNL techniques by up to 0.31 in F-1 Score (0.52 \rightarrow 0.83).more » « lessFree, publicly-accessible full text available February 10, 2026
-
Log anomaly detection, critical in identifying system failures and preempting security breaches, finds irregular patterns within large volumes of log data. Modern log anomaly detectors rely on training deep learning models on clean anomaly-free log data. However, such clean log data requires expensive and tedious human labeling. In this paper, we thus propose a robust log anomaly detection framework, PlutoNOSPACE, that automatically selects a clean representative sample subset of the polluted log sequence data to train a Transformer-based anomaly detection model. Pluto features three innovations. First, due to localized concentrations of anomalies inherent in the embedding space of log data, Pluto partitions the sequence embedding space generated by the model into regions that then allow it to identify and discard regions that are highly polluted by our pollution level estimation scheme, based on our pollution quantification via Gaussian mixture modeling. Second, for the remaining more slightly polluted regions, we select samples that maximally purify the eigenvector spectrum, which can be transformed into the NP-hard facility location problem; allowing us to leverage its greedy solution with a (1-(1/e)) approximation guarantee in optimality. Third, by iteratively alternating between the above subset selection, a model re-training on the latest subset, and a subset filtering using dynamic training artifacts generated by the latest model, the data selected is progressively refined. The final sample set is used to retrain the final anomaly detection model. Our experiments on four real-world log benchmark datasets demonstrate that by retaining 77.7% (BGL) to 96.6% (ThunderBird) of the normal sequences while effectively removing 90.3% (BGL) to 100.0% (ThunderBird, HDFS) of the anomalies, Pluto provides a significant absolute F-1 improvement up to 68.86% (2.16% → 71.02%) compared to the state-of-the-art sample selection methods. The implementation of this work is available at https://github.com/LeiMa0324/Pluto-SIGMOD25.more » « lessFree, publicly-accessible full text available October 1, 2025
-
Log anomaly detection, critical in identifying system failures and preempting security breaches, finds irregular patterns within large volumes of log data. Modern log anomaly detectors rely on training deep learning models on clean anomaly-free log data. However, such clean log data requires expensive and tedious human labeling. In this paper, we thus propose a robust log anomaly detection framework, PlutoNOSPACE, that automatically selects a clean representative sample subset of the polluted log sequence data to train a Transformer-based anomaly detection model. Pluto features three innovations. First, due to localized concentrations of anomalies inherent in the embedding space of log data, Pluto partitions the sequence embedding space generated by the model into regions that then allow it to identify and discard regions that are highly polluted by our pollution level estimation scheme, based on our pollution quantification via Gaussian mixture modeling. Second, for the remaining more slightly polluted regions, we select samples that maximally purify the eigenvector spectrum, which can be transformed into the NP-hard facility location problem; allowing us to leverage its greedy solution with a (1-(1/e)) approximation guarantee in optimality. Third, by iteratively alternating between the above subset selection, a model re-training on the latest subset, and a subset filtering using dynamic training artifacts generated by the latest model, the data selected is progressively refined. The final sample set is used to retrain the final anomaly detection model. Our experiments on four real-world log benchmark datasets demonstrate that by retaining 77.7\% (BGL) to 96.6\% (ThunderBird) of the normal sequences while effectively removing 90.3\% (BGL) to 100.0\% (ThunderBird, HDFS) of the anomalies, Pluto provides a significant absolute F-1 improvement up to 68.86\% (2.16\% → 71.02\%) compared to the state-of-the-art sample selection methods. The implementation of this work is available at https://github.com/LeiMa0324/Pluto-SIGMOD25.more » « lessFree, publicly-accessible full text available September 30, 2025
-
Existing approaches to automatic data transformation are insufficient to meet the requirements in many real-world scenarios, such as the building sector. First, there is no convenient interface for domain experts to provide domain knowledge easily. Second, they require significant training data collection overheads. Third, the accuracy suffers from complicated schema changes. To address these shortcomings, we present a novel approach that leverages the unique capabilities of large language models (LLMs) in coding, complex reasoning, and zero-shot learning to generate SQL code that transforms the source datasets into the target datasets. We demonstrate the viability of this approach by designing an LLM-based framework, termed SQLMorpher, which comprises a prompt generator that integrates the initial prompt with optional domain knowledge and historical patterns in external databases. It also implements an iterative prompt optimization mechanism that automatically improves the prompt based on flaw detection. The key contributions of this work include (1) pioneering an end-to-end LLM-based solution for data transformation, (2) developing a benchmark dataset of 105 real-world building energy data transformation problems, and (3) conducting an extensive empirical evaluation where our approach achieved 96% accuracy in all 105 problems. SQLMorpher demonstrates the effectiveness of utilizing LLMs in complex, domain-specific challenges, highlighting the potential of their potential to drive sustainable solutions.more » « less
-
Outlier detection is critical in real world. Due to the existence of many outlier detection techniques which often return different results for the same data set, the users have to address the problem of determining which among these techniques is the best suited for their task and tune its parameters. This is particularly challenging in the unsupervised setting, where no labels are available for cross-validation needed for such method and parameter optimization. In this work, we propose AutoOD which uses the existing unsupervised detection techniques to automatically produce high quality outliers without any human tuning. AutoOD's fundamentally new strategy unifies the merits of unsupervised outlier detection and supervised classification within one integrated solution. It automatically tests a diverse set of unsupervised outlier detectors on a target data set, extracts useful signals from their combined detection results to reliably capture key differences between outliers and inliers. It then uses these signals to produce a "custom outlier classifier" to classify outliers, with its accuracy comparable to supervised outlier classification models trained with ground truth labels - without having access to the much needed labels. On a diverse set of benchmark outlier detection datasets, AutoOD consistently outperforms the best unsupervised outlier detector selected from hundreds of detectors. It also outperforms other tuning-free approaches from 12 to 97 points (out of 100) in the F-1 score.more » « less
-
Twinning is a major mechanism of plastic deformation in hexagonal close-packed (hcp) structures. However, a mechanistic understanding of twin nucleation and growth has yet to be established. This paper reviews the recent progress in the understanding of twinning in hcp materials—particularly the newly discovered phase transformation-mediated twinning mechanisms—in terms of crystallographical analysis, theoretical mechanics calculations, and numerical simulations. Moreover, the relationship between phase transformation-mediated twinning mechanisms and twinning dislocations are presented, forming a unified understanding of deformation twinning. Finally, this paper also reviews the recent studies on transformation twins that are formed in hcp martensite microstructures after various phase transformations, highlighting the critical role of the mechanical loading in engineering a transformation twin microstructure.more » « less