skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Cao, Sky"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract It is believed that Euclidean Yang–Mills theories behave like the massless Gaussian free field (GFF) at short distances. This makes it impossible to define the main observables for these theories—the Wilson loop observables—in dimensions greater than two, because line integrals of the GFF do not exist in such dimensions. Taking forward a proposal of Charalambous and Gross, this article shows that it is possible to define Euclidean Yang–Mills theories on the 3D unit torus as ‘random distributional gauge orbits’, provided that they indeed behave like the GFF in a certain sense. One of the main technical tools is the existence of the Yang–Mills heat flow on the 3D torus starting from GFF-like initial data, which is established in a companion paper. A key consequence of this construction is that under the GFF assumption, one can define a notion of ‘regularized Wilson loop observables’ for Euclidean Yang–Mills theories on the 3D unit torus. 
    more » « less