skip to main content


Search for: All records

Creators/Authors contains: "Cappelli, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although teaching self-efficacy is associated with many benefits for teachers and students, little is known about how teachers develop a sense of efficacy in the early years of their careers. Drawing on survey ( N = 179) and interview ( N = 10) data, this study investigates the sources of self-efficacy in a national sample of teachers who participated in the Noyce program. All teachers completed an online survey that included both the Teacher Sense of Efficacy Instrument and open-ended items prompting them to reflect on the sources of their self-efficacy. Ten teachers participated in semi-structured follow-up interviews. Enactive mastery experiences were the most common source of self-efficacy identified by teachers, followed by social persuasions and vicarious experiences. Physiological and affective states were identified infrequently and more often related to negative experiences that lowered self-efficacy than to positive experiences. Beginning teachers identified more negative enactive experiences than either Novice (2–3 years experiences) or Career teachers. In interviews, teachers described how the sources combined or interacted to influence their self-efficacy. Findings contribute to better understandings of the sources of self-efficacy with implications for how best to support teachers at different stages of their careers. 
    more » « less
  2. This innovative practice work in progress paper presents the Biologically Inspired Design for Engineering Education (BTRDEE) project, to create socially relevant, accessible, highly-contextualized biologically inspired design experiences that can be disseminated to high school audiences engineering audiences in Georgia and nationally. Curriculum units arc 6-10 weeks in duration and will meet many standards for high school engineering courses in Georgia. There will be three curriculum units (one for each engineering course in the 3-course pathway), each building skills in engineering design and specific skills for BID. Currently in its second year, BIRDEE has developed its first unit of curriculum and has hosted its first professional development with 4 pilot teachers in the summer of 2020. The BIRDEE curriculum situates challenges within socially relevant contexts and provides cutting-edge biological scenarios to ignite creative and humanistic engineering experiences to 1) drive greaterengagement in engineering, particularly among women, 2) improve student engineering skills, especially problem definition and ideation skills, and 3) increase students awareness of the connection and impacts between the engineered and living worlds. This paper describes the motivation for the BIRDEE project, the learning goals for the curriculum, and a description of the first unit. We provide reflections and feedback from teacher work and focus groups during our summer professional development and highlight the challenges associated with building BID competency across biology and engineering to equip teachers with the skills they need to teach the BIRDEE units. These lessons can be applied to teaching BID more broadly, as its multidisciplinary nature creates challenges (and opportunities) for teaching and learning engineering design. 
    more » « less
  3. This innovative practice work in progress paper presents Biologically inspired design (BID) to transfer design principles identified in nature to human-centered design problems. The Biologically Inspired Design for Engineering Education (BIRDEE) program uses biologically inspired design to teach high school engineering in a way that uniquely engages students in the natural world. For high school students, identifying natural systems’ analogues for human design problems can be challenging. Furthermore, it is often the case that students focus on and transfer superficial structures, rather than underlying design principles. Based on the Structure-Behavior-Function (SBF) design ontology, we developed a modified cognitive scaffold called Structure- Function-Mechanism (SFM) to assist students and teachers with identifying functionally similar biological analogies and identifying and transferring design principles. In this paper we describe SFM and its importance in BID and our observations from teaching SFM to high school teachers during a multi-week professional development workshop in the summer of 2020. Based on teachers’ work artifacts, transcriptions of discussions, and focus groups, we highlight the challenges of teaching SFM and our plans to scaffold this important concept for students and teachers alike. 
    more » « less
  4. Biologically inspired design has become increasingly common in graduate and undergraduate engineering programs, consistent with an expanding emphasis by professional engineering societies on cross-disciplinary critical thinking skills and adaptive and sustainable design. However, bio-inspired engineering is less common in K-12 education. In 2019, the NSF funded a K-12 project entitled Biologically Inspired Design for Engineering Education (BIRDEE), to create socially relevant, accessible, and highly contextualized high school engineering curricula focusing on bio-inspired design. Studies have shown that women and underrepresented minorities are drawn to curricula, courses, and instructional strategies that are integrated, emphasize systems thinking, and facilitate connection building across courses or disciplines. The BIRDEE project also seeks to interest high school girls in engineering by providing curricula that incorporate humanistic, bio-inspired engineering with a focus on sustainable and authentic design contexts. BIRDEE curricula integrate bio-inspired design into the engineering design process by leveraging design tools that facilitate the application of biological concepts to design challenges. This provides a conceptual framework enabling students to systematically define a design problem, resulting in better, more well-rounded problem specifications. The professional development (PD) for the participating teachers include six-week-long summer internships in university research laboratories focused on biology and bio-inspired design. The goal of these internships is to improve engineering teachers’ knowledge of bio-inspired design by partnering with cutting-edge engineers and scientists to study animal features and behaviors and their applications to engineering design. However, due to COVID-19 and research lab closures in the summer of 2020, the research team had to transfer the summer PD experience to an online setting. An asynchronous, quasi-facilitated online course was developed and delivered to teachers over six weeks. In this paper, we will discuss online pedagogical approaches to experiential learning, teaching bio-inspired design concepts, and the integration of these approaches in the engineering design process. Central to the online PD design and function of each course was the use of inquiry, experiential and highly-collaborative learning strategies. Preliminary results show that teachers appreciated the aspects of the summer PD that included exploration, such as during the “Found Object” activity, and the process of building a prototype. These activities represented experiential learning opportunities where teachers were able to learn by doing. It was noted throughout the focus group discussions that such opportunities were appreciated by participating teachers. Teachers indicated that the experiential learning components of the PD allowed them to do something outside of their comfort zone, inspired them to do research that they would not have done outside of this experience, and allowed them to “be in the student's seat and get hands-on application”. By participating in these experiential learning opportunities, teachers were also able to better understand how the BIRDEE curriculum may impact students’ learning in their classrooms 
    more » « less