skip to main content

Search for: All records

Creators/Authors contains: "Cappello, Franck"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Error-bounded lossy compression is a state-of-the-art data reduction technique for HPC applications because it not only significantly reduces storage overhead but also can retain high fidelity for postanalysis. Because supercomputers and HPC applications are becoming heterogeneous using accelerator-based architectures, in particular GPUs, several development teams have recently released GPU versions of their lossy compressors. However, existing state-of-the-art GPU-based lossy compressors suffer from either low compression and decompression throughput or low compression quality. In this paper, we present an optimized GPU version, cuSZ, for one of the best error-bounded lossy compressors-SZ. To the best of our knowledge, cuSZ is the firstmore »error-bounded lossy compressor on GPUs for scientific data. Our contributions are fourfold. (1) We propose a dual-quantization scheme to entirely remove the data dependency in the prediction step of SZ such that this step can be performed very efficiently on GPUs. (2) We develop an efficient customized Huffman coding for the SZ compressor on GPUs. (3) We implement cuSZ using CUDA and optimize its performance by improving the utilization of GPU memory bandwidth. (4) We evaluate our cuSZ on five real-world HPC application datasets from the Scientific Data Reduction Benchmarks and compare it with other state-of-the-art methods on both CPUs and GPUs. Experiments show that our cuSZ improves SZ's compression throughput by up to 370.1x and 13.1x, respectively, over the production version running on single and multiple CPU cores, respectively, while getting the same quality of reconstructed data. It also improves the compression ratio by up to 3.48x on the tested data compared with another state-of-the-art GPU supported lossy compressor.« less
    Free, publicly-accessible full text available October 3, 2021
  2. Today’s extreme-scale high-performance computing (HPC) applications are producing volumes of data too large to save or transfer because of limited storage space and I/O bandwidth. Error-bounded lossy compression has been commonly known as one of the best solutions to the big science data issue, because it can significantly reduce the data volume with strictly controlled data distortion based on user requirements. In this work, we develop an adaptive parameter optimization algorithm integrated with a series of optimization strategies for SZ, a state-of-the-art prediction-based compression model. Our contribution is threefold. (1) We exploit effective strategies by using 2nd-order regression and 2nd-ordermore »Lorenzo predictors to improve the prediction accuracy significantly for SZ, thus substantially improving the overall compression quality. (2) We design an efficient approach selecting the best-fit parameter setting, by conducting a comprehensive priori compression quality analysis and exploiting an efficient online controlling mechanism. (3) We evaluate the compression quality and performance on a supercomputer with 4,096 cores, as compared with other state-ofthe-art error-bounded lossy compressors. Experiments with multiple real world HPC simulations datasets show that our solution can improve the compression ratio up to 46% compared with the second-best compressor. Moreover, the parallel I/O performance is improved by up to 40% thanks to the significant reduction of data size.« less
    Free, publicly-accessible full text available June 23, 2021
  3. With ever-increasing volumes of scientific floating-point data being produced by high-performance computing applications, significantly reducing scientific floating-point data size is critical, and error-controlled lossy compressors have been developed for years. None of the existing scientific floating-point lossy data compressors, however, support effective fixed-ratio lossy compression. Yet fixed-ratio lossy compression for scientific floating-point data not only compresses to the requested ratio but also respects a user-specified error bound with higher fidelity. In this paper, we present FRaZ: a generic fixed-ratio lossy compression framework respecting user-specified error constraints. The contribution is twofold. (1) We develop an efficient iterative approach to accurately determinemore »the appropriate error settings for different lossy compressors based on target compression ratios. (2) We perform a thorough performance and accuracy evaluation for our proposed fixed-ratio compression framework with multiple state-of-the-art error-controlled lossy compressors, using several real-world scientific floating-point datasets from different domains. Experiments show that FRaZ effectively identifies the optimum error setting in the entire error setting space of any given lossy compressor. While fixed-ratio lossy compression is slower than fixed-error compression, it provides an important new lossy compression technique for users of very large scientific floating-point datasets.« less
    Free, publicly-accessible full text available May 18, 2021
  4. With the emergence of versatile storage systems, multi-level checkpointing (MLC) has become a common approach to gain efficiency. However, multi-level checkpoint/restart can cause enormous I/O traffic on HPC systems. To use multilevel checkpointing efficiently, it is important to optimize checkpoint/restart configurations. Current approaches, namely modeling and simulation, are either inaccurate or slow in determining the optimal configuration for a large scale system. In this paper, we show that machine learning models can be used in combination with accurate simulation to determine the optimal checkpoint configurations. We also demonstrate that more advanced techniques such as neural networks can further improve themore »performance in optimizing checkpoint configurations.« less
    Free, publicly-accessible full text available May 1, 2021
  5. Future exascale systems are expected to be characterized by more frequent failures than current petascale systems. This places increased importance on the application to minimize the amount of time wasted due to recompution when recovering from a checkpoint. Typically HPC application checkpoint at iteration boundaries. However, for applications that have a high per-iteration cost, checkpointing inside the iteration limits the amount of re-computation. This paper analyzes the performance and accuracy of using lossy compressed check-pointing in the computational chemistry application NWChem. Our results indicate that lossy compression is an effective tool for reducing the sub-iteration checkpoint size. Moreover, compression errormore »tolerances that yield acceptable deviation in accuracy and iteration count are quantified.« less
    Free, publicly-accessible full text available November 17, 2020
  6. Quantum circuit simulations are critical for evaluating quantum algorithms and machines. However, the number of state amplitudes required for full simulation increases exponentially with the number of qubits. In this study, we leverage data compression to reduce memory requirements, trading computation time and fidelity for memory space. Specifically, we develop a hybrid solution by combining the lossless compression and our tailored lossy compression method with adaptive error bounds at each timestep of the simulation. Our approach optimizes for compression speed and makes sure that errors due to lossy compression are uncorrelated, an important property for comparing simulation output with physicalmore »machines. Experiments show that our approach reduces the memory requirement of simulating the 61-qubit Grover's search algorithm from 32 exabytes to 768 terabytes of memory on Argonne's Theta supercomputer using 4,096 nodes. The results suggest that our techniques can increase the simulation size by 2~16 qubits for general quantum circuits.« less
    Free, publicly-accessible full text available November 1, 2020
  7. In order to evaluate, validate, and refine the design of a new quantum algorithm or a quantum computer, researchers and developers need methods to assess their correctness and fidelity. This requires the capabilities of simulation for full quantum state amplitudes. However, the number of quantum state amplitudes increases exponentially with the number of qubits, leading to the exponential growth of the memory requirement. In this work, we present our technique to simulate more qubits than previously reported by using lossy data compression. Our empirical data suggests that we can simulate full state quantum circuits up to 63 qubits with 0.8more »petabytes memory.« less
  8. In order to evaluate, validate, and refine the design of new quantum algorithms or quantum computers, researchers and developers need methods to assess their correctness and fidelity. This requires the capabilities of quantum circuit simulations. However, the number of quantum state amplitudes increases exponentially with the number of qubits, leading to the exponential growth of the memory requirement for the simulations. In this work, we present our memory-efficient quantum circuit simulation by using lossy data compression. Our empirical data shows that we reduce the memory requirement to 16.5% and 2.24E-06 of the original requirement for QFT and Grover’s search, respectively.more »This finding further suggests that we can simulate deep quantum circuits up to 63 qubits with 0.8 petabytes memory.« less
  9. Classical simulation of quantum circuits is crucial for evaluating and validating the design of new quantum algorithms. However, the number of quantum state amplitudes increases exponentially with the number of qubits, leading to the exponential growth of the memory requirement for the simulations. In this paper, we present a new data reduction technique to reduce the memory requirement of quantum circuit simulations. We apply our amplitude-aware lossy compression technique to the quantum state amplitude vector to trade the computation time and fidelity for memory space. The experimental results show that our simulator only needs 1/16 of the original memory requirementmore »to simulate Quantum Fourier Transform circuits with 99.95% fidelity. The reduction amount of memory requirement suggests that we could increase 4 qubits in the quantum circuit simulation comparing to the simulation without our technique. Additionally, for some specific circuits, like Grover’s search, we could increase the simulation size by 18 qubits.« less