Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study the problem of analyzing the effects of inconsistencies in perception, intent prediction, and decision making among interacting agents. When accounting for these effects, planning is akin to synthesizing policies in uncertain and potentially partially-observable environments. We consider the case where each agent, in an effort to avoid a difficult planning problem, does not consider the inconsistencies with other agents when computing its policy. In particular, each agent assumes that other agents compute their policies in the same way as it does, i.e., with the same objective and based on the same system model. While finding policies on the composed system model, which accounts for the agent interactions, scales exponentially, we efficiently provide quantifiable performance metrics in the form of deltas in the probability of satisfying a given specification. We showcase our approach using two realistic autonomous vehicle case-studies and implement it in an autonomous vehicle simulator.more » « less
-
This paper introduces a strategy for satisfying basic control objectives for systems whose dynamics are almost entirely unknown. This setting is motivated by a scenario where a system undergoes a critical failure, thus significantly changing its dynamics. In such a case, retaining the ability to satisfy basic control objectives such as reach-avoid is imperative. To deal with significant restrictions on our knowledge of system dynamics, we develop a theory of myopic control. The primary goal of myopic control is to, at any given time, optimize the current direction of the system trajectory, given solely the limited information obtained about the system until that time. Building upon this notion, we propose a control algorithm which simultaneously uses small perturbations in the control effort to learn local system dynamics while moving in the direction which seems to be optimal based on previously obtained knowledge. We show that the algorithm results in a trajectory that is nearly optimal in the myopic sense, i.e., it is moving in a direction that seems to be nearly the best at the given time, and provide formal bounds for suboptimality. We demonstrate the usefulness of the proposed algorithm on a high-fidelity simulation of a damaged Boeing 747 seeking to remain in level flight.more » « less