skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Directed evolution of the multicopper oxidase laccase for cell surface proximity labeling and electron microscopy
Abstract Enzymes that oxidize aromatic substrates have shown utility in a range of cell-based technologies including live cell proximity labeling (PL) and electron microscopy (EM), but are associated with drawbacks such as the need for toxic H2O2. Here, we explore laccases as a novel enzyme class for PL and EM in mammalian cells. LaccID, generated via 11 rounds of directed evolution from an ancestral fungal laccase, catalyzes the one-electron oxidation of diverse aromatic substrates using O2instead of toxic H2O2, and exhibits activity selective to the surface plasma membrane of both living and fixed cells. We show that LaccID can be used with mass spectrometry-based proteomics to map the changing surface composition of T cells that engage with tumor cells via antigen-specific T cell receptors. In addition, we use LaccID as a genetically-encodable tag for EM visualization of cell surface features in mammalian cell culture and in the fly brain. Our study paves the way for future cell-based applications of LaccID.  more » « less
Award ID(s):
2014862 1707356
PAR ID:
10623752
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract α‐substituted ketones are important chemical targets as synthetic intermediates as well as functionalities in natural products and pharmaceuticals. We report the α‐acetylation of C(sp3)−H substrates R−H with arylmethyl ketones ArC(O)Me to provide α‐alkylated ketones ArC(O)CH2R at RT withtBuOOtBu as oxidant via copper(I) ‐diketiminato catalysts. Proceeding via alkyl radicals R•, this method enables α‐substitution with bulky substituents without competing elimination that occurs in more traditional alkylation reactions between enolates and alkyl electrophiles. DFT studies suggest the intermediacy of copper(II) enolates [CuII](CH2C(O)Ar) that capture alkyl radicals R• to give R−CH2C(O)Ar outcompeting dimerization of the copper(II) enolate to give the 1,4‐diketone ArC(O)CH2CH2C(O)Ar. 
    more » « less
  2. The title thiazole orange derivative, bearing an alkene substituent, crystallized as a monohydrate of its iodide salt, namely, (Z)-1-(hex-5-en-1-yl)-4-{[3-methyl-2,3-dihydro-1,3-benzothiazol-2-ylidene]methyl}quinolin-1-ium iodide monohydrate, C24H25N2S+·I·H2O. The packing features aromatic π-stacking and van der Waals interactions. The water molecule of crystallization interacts with the cation and anionviaO—H...N and O—H...I hydrogen bonds, respectively. 
    more » « less
  3. Abstract Central metabolism is organised through high‐flux, Nicotinamide Adenine Dinucleotide (NAD+/NADH) and NADP+/NADPH systems operating at near equilibrium. As oxygen is indispensable for aerobic organisms, these systems are also linked to the levels of reactive oxygen species, such as H2O2, and through H2O2to the regulation of macromolecular structures and activities, via kinetically controlled sulphur switches in the redox proteome. Dynamic changes in H2O2production, scavenging and transport, associated with development, growth and responses to the environment are, therefore, linked to the redox state of the cell and regulate cellular function. These basic principles form the ‘redox code’ of cells and were first defined by D. P. Jones and H. Sies in 2015. Here, we apply these principles to plants in which recent studies have shown that they can also explain cell‐to‐cell and even plant‐to‐plant signalling processes. The redox code is, therefore, an integral part of biological systems and can be used to explain multiple processes in plants at the subcellular, cellular, tissue, whole organism and perhaps even community and ecosystem levels. As the environmental conditions on our planet are worsening due to global warming, climate change and increased pollution levels, new studies are needed applying the redox code of plants to these changes. 
    more » « less
  4. Cell-to-cell communication is fundamental to multicellular organisms and unicellular organisms living in a microbiome. It is thought to have evolved as a stress- or quorum-sensing mechanism in unicellular organisms. A unique cell-to-cell communication mechanism that uses reactive oxygen species (ROS) as a signal (termed the “ROS wave”) was identified in flowering plants. This process is essential for systemic signaling and plant acclimation to stress and can spread from a small group of cells to the entire plant within minutes. Whether a similar signaling process is found in other organisms is however unknown. Here, we report that the ROS wave can be found in unicellular algae, amoeba, ferns, mosses, mammalian cells, and isolated hearts. We further show that this process can be triggered in unicellular and multicellular organisms by a local stress or H2O2treatment and blocked by the application of catalase or NADPH oxidase inhibitors and that in unicellular algae it communicates important stress–response signals between cells. Taken together, our findings suggest that an active process of cell-to-cell ROS signaling, like the ROS wave, evolved before unicellular and multicellular organisms diverged. This mechanism could have communicated an environmental stress signal between cells and coordinated the acclimation response of many different cells living in a community. The finding of a signaling process, like the ROS wave, in mammalian cells further contributes to our understanding of different diseases and could impact the development of drugs that target for example cancer or heart disease. 
    more » « less
  5. Abstract Oxidative protein folding in the endoplasmic reticulum (ER) is essential for all eukaryotic cells yet generates hydrogen peroxide (H2O2), a reactive oxygen species (ROS). The ER-transmembrane protein that provides reducing equivalents to ER and guards the cytosol for antioxidant defense remains unidentified. Here we combine AlphaFold2-based and functional reporter screens inC. elegansto discover a previously uncharacterized and evolutionarily conserved protein ERGU-1 that fulfills these roles. DeletingC. elegansERGU-1 causes excessive H2O2and transcriptional gene up-regulation through SKN-1, homolog of mammalian antioxidant master regulator NRF2. ERGU-1 deficiency also impairs organismal reproduction and behavioral responses to H2O2. BothC. elegansand human ERGU-1 proteins localize to ER membranes and form network reticulum structures. Human andDrosophilahomologs of ERGU-1 can rescueC. elegansmutant phenotypes, demonstrating evolutionarily ancient and conserved functions. In addition, purified ERGU-1 and human homolog TMEM161B exhibit redox-modulated oligomeric states. Together, our results reveal an ER-membrane-specific protein machinery for peroxide detoxification and suggest a previously unknown and conserved mechanisms for antioxidant defense in animal cells. 
    more » « less