We consider the nonparametric estimation of an S-shaped regression function. The least squares estimator provides a very natural, tuning-free approach, but results in a non-convex optimization problem, since the inflection point is unknown. We show that the estimator may nevertheless be regarded as a projection onto a finite union of convex cones, which allows us to propose a mixed primal-dual bases algorithm for its efficient, sequential computation. After developing a projection framework that demonstrates the consistency and robustness to misspecification of the estimator, our main theoretical results provide sharp oracle inequalities that yield worst-case and adaptive risk bounds for the estimation of the regression function, as well as a rate of convergence for the estimation of the inflection point. These results reveal not only that the estimator achieves the minimax optimal rate of convergence for both the estimation of the regression function and its inflection point (up to a logarithmic factor in the latter case), but also that it is able to achieve an almost-parametric rate when the true regression function is piecewise affine with not too many affine pieces. Simulations and a real data application to air pollution modelling also confirm the desirable finite-sample properties of the estimator, and our algorithm is implemented in the R package Sshaped.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Summary Canonical correlation analysis investigates linear relationships between two sets of variables, but it often works poorly on modern datasets because of high dimensionality and mixed data types such as continuous, binary and zero-inflated. To overcome these challenges, we propose a semiparametric approach to sparse canonical correlation analysis based on the Gaussian copula. The main result of this paper is a truncated latent Gaussian copula model for data with excess zeros, which allows us to derive a rank-based estimator of the latent correlation matrix for mixed variable types without estimation of marginal transformation functions. The resulting canonical correlation analysis method works well in high-dimensional settings, as demonstrated via numerical studies, and when applied to the analysis of association between gene expression and microRNA data from breast cancer patients.more » « less
-
Summary Analysing secondary outcomes is a common practice for case–control studies. Traditional secondary analysis employs either completely parametric models or conditional mean regression models to link the secondary outcome to covariates. In many situations, quantile regression models complement mean-based analyses and provide alternative new insights on the associations of interest. For example, biomedical outcomes are often highly asymmetric, and median regression is more useful in describing the ‘central’ behaviour than mean regressions. There are also cases where the research interest is to study the high or low quantiles of a population, as they are more likely to be at risk. We approach the secondary quantile regression problem from a semiparametric perspective, allowing the covariate distribution to be completely unspecified. We derive a class of consistent semiparametric estimators and identify the efficient member. The asymptotic properties of the resulting estimators are established. Simulation results and a real data analysis are provided to demonstrate the superior performance of our approach with a comparison with the only existing approach so far in the literature.
-
Summary Spatial data have become increasingly common in epidemiology and public health research thanks to advances in GIS (Geographic Information Systems) technology. In health research, for example, it is common for epidemiologists to incorporate geographically indexed data into their studies. In practice, however, the spatially defined covariates are often measured with error. Naive estimators of regression coefficients are attenuated if measurement error is ignored. Moreover, the classical measurement error theory is inapplicable in the context of spatial modeling because of the presence of spatial correlation among the observations. We propose a semiparametric regression approach to obtain bias-corrected estimates of regression parameters and derive their large sample properties. We evaluate the performance of the proposed method through simulation studies and illustrate using data on Ischemic Heart Disease (IHD). Both simulation and practical application demonstrate that the proposed method can be effective in practice.
-
Summary We study the regression relationship between covariates in case–control data: an area known as the secondary analysis of case–control studies. The context is such that only the form of the regression mean is specified, so that we allow an arbitrary regression error distribution, which can depend on the covariates and thus can be heteroscedastic. Under mild regularity conditions we establish the theoretical identifiability of such models. Previous work in this context has either specified a fully parametric distribution for the regression errors, specified a homoscedastic distribution for the regression errors, has specified the rate of disease in the population (we refer to this as the true population) or has made a rare disease approximation. We construct a class of semiparametric estimation procedures that rely on none of these. The estimators differ from the usual semiparametric estimators in that they draw conclusions about the true population, while technically operating in a hypothetical superpopulation. We also construct estimators with a unique feature, in that they are robust against the misspecification of the regression error distribution in terms of variance structure, whereas all other non-parametric effects are estimated despite the biased samples. We establish the asymptotic properties of the estimators and illustrate their finite sample performance through simulation studies, as well as through an empirical example on the relationship between red meat consumption and hetero-cyclic amines. Our analysis verified the positive relationship between red meat consumption and two forms of hetro-cyclic amines, indicating that increased red meat consumption leads to increased levels of MeIQx and PhIP, both being risk factors for colorectal cancer. Computer software as well as data to illustrate the methodology are available from http://www.stat.tamu.edu/~carroll/matlab__programs/software.php .