- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00000030000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Patrick, Christopher J. (3)
-
Carvallo, Fernando R. (2)
-
Kinard, Sean K. (2)
-
Reese, Brandi Kiel (2)
-
Strickland, Bradley A. (2)
-
Carvallo, Fernando (1)
-
Hogan, J. Derek (1)
-
Hogan, James Derek (1)
-
Kinard, Sean (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Carvallo, Fernando R. ; Strickland, Bradley A. ; Kinard, Sean K. ; Reese, Brandi Kiel ; Hogan, J. Derek ; Patrick, Christopher J. ( , Freshwater Biology)
-
Kinard, Sean ; Patrick, Christopher J. ; Carvallo, Fernando ( , PeerJ)Anthropogenic climate change is expected to increase the aridity of many regions of the world. Surface water ecosystems are particularly vulnerable to changes in the water-cycle and may suffer adverse impacts in affected regions. To enhance our understanding of how freshwater communities will respond to predicted shifts in water-cycle dynamics, we employed a space for time approach along a natural precipitation gradient on the Texas Coastal Prairie. In the spring of 2017, we conducted surveys of 10 USGS-gauged, wadeable streams spanning a semi-arid to sub-humid rainfall gradient; we measured nutrients, water chemistry, habitat characteristics, benthic macroinvertebrates, and fish communities. Fish diversity correlated positively with precipitation and was negatively correlated with conductivity. Macroinvertebrate diversity peaked within the middle of the gradient. Semi-arid fish and invertebrate communities were dominated by euryhaline and live-bearing taxa. Sub-humid communities contained environmentally sensitive trichopterans and ephemeropterans as well as a variety of predatory fish which may impose top-down controls on primary consumers. These results warn that aridification coincides with the loss of competitive and environmentally sensitive taxa which could yield less desirable community states.more » « less