Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The view that words are arbitrary is a foundational assumption about language, used to set human languages apart from nonhuman communication. We present here a study of the alignment between the semantic and phonological structure (systematicity) of American Sign Language (ASL), and for comparison, two spoken languages—English and Spanish. Across all three languages, words that are semantically related are more likely to be phonologically related, highlighting systematic alignment between word form and word meaning. Critically, there is a significant effect of iconicity (a perceived physical resemblance between word form and word meaning) on this alignment: words are most likely to be phonologically related when they are semantically related and iconic. This phenomenon is particularly widespread in ASL: half of the signs in the ASL lexicon areiconicallyrelated to other signs, i.e., there is a nonarbitrary relationship between form and meaning that is shared across signs. Taken together, the results reveal that iconicity can act as a driving force behind the alignment between the semantic and phonological structure of spoken and signed languages, but languages may differ in the extent that iconicity structures the lexicon. Theories of language must account for iconicity as a possible organizing principle of the lexicon.more » « lessFree, publicly-accessible full text available April 22, 2026
-
Sign language recognition and translation technologies have the potential to increase access and inclusion of deaf signing communities, but research progress is bottlenecked by a lack of representative data. We introduce a new resource for American Sign Language (ASL) modeling, the Sem-Lex Benchmark. The Benchmark is the current largest of its kind, consisting of over 84k videos of isolated sign productions from deaf ASL signers who gave informed consent and received compensation. Human experts aligned these videos with other sign language resources including ASL-LEX, SignBank, and ASL Citizen, enabling useful expansions for sign and phonological feature recognition. We present a suite of experiments which make use of the linguistic information in ASL-LEX, evaluating the practicality and fairness of the Sem-Lex Benchmark for isolated sign recognition (ISR). We use an SL-GCN model to show that the phonological features are recognizable with 85% accuracy, and that they are effective as an auxiliary target to ISR. Learning to recognize phonological features alongside gloss results in a 6% improvement for few-shot ISR accuracy and a 2% improvement for ISR accuracy overall. Instructions for downloading the data can be found at https://github.com/leekezar/SemLex.more » « less
-
Like speech, signs are composed of discrete, recombinable features called phonemes. Prior work shows that models which can recognize phonemes are better at sign recognition, motivating deeper exploration into strategies for modeling sign language phonemes. In this work, we learn graph convolution networks to recognize the sixteen phoneme "types" found in ASL-LEX 2.0. Specifically, we explore how learning strategies like multi-task and curriculum learning can leverage mutually useful information between phoneme types to facilitate better modeling of sign language phonemes. Results on the Sem-Lex Benchmark show that curriculum learning yields an average accuracy of 87% across all phoneme types, outperforming fine-tuning and multi-task strategies for most phoneme types.more » « less
-
Like speech, signs are composed of discrete, recombinable features called phonemes. Prior work shows that models which can recognize phonemes are better at sign recognition, motivating deeper exploration into strategies for modeling sign language phonemes. In this work, we learn graph convolution networks to recognize the sixteen phoneme “types” found in ASL-LEX2.0. Specifically, we explore how learning strategies like multi-task and curriculum learning can leverage mutually useful information between phoneme types to facilitate the remodeling of sign language phonemes. Results on the Sem-Lex Benchmark show that curriculum learning yields an average accuracy of 87% across all phoneme types, outperforming fine-tuning and multi-task strategies for most phonemetypes.more » « less
-
Sign languages are used as a primary language by approximately 70 million D/deaf people world-wide. However, most communication technologies operate in spoken and written languages, creating inequities in access. To help tackle this problem, we release ASL Citizen, the first crowdsourced Isolated Sign Language Recognition (ISLR) dataset, collected with consent and containing 83,399 videos for 2,731 distinct signs filmed by 52 signers in a variety of environments. We propose that this dataset be used for sign language dictionary retrieval for American Sign Language (ASL), where a user demonstrates a sign to their webcam to retrieve matching signs from a dictionary. Through our generalizable baselines, we show that training supervised machine learning classifiers with our dataset achieves competitive performance on metrics relevant for dictionary retrieval, with 63% accuracy and a recall-at-10 of 91%, evaluated entirely on videos of users who are not present in the training or validation sets.more » « less
-
Iconic signs are overrepresented in the vocabularies of young deaf children, but it is unclear why. It is possible that iconic signs are easier for children to learn, but it is also possible that adults use iconic signs in child-directed signing in ways that make them more learnable, either by using them more often than less iconic signs or by lengthening them. We analyzed videos of naturalistic play sessions between parents and deaf children ( n = 24 dyads) aged 9–60 months. To determine whether iconic signs are overrepresented during child-directed signing, we compared the iconicity of actual parent productions to the iconicity of simulated vocabularies designed to estimate chance levels of iconicity. For almost all dyads, parent sign types and tokens were not more iconic than the simulated vocabularies, suggesting that parents do not select more iconic signs during child-directed signing. To determine whether iconic signs are more likely to be lengthened, we ran a linear regression predicting sign duration, and found an interaction between age and iconicity: while parents of younger children produced non-iconic and iconic signs with similar durations, parents of older children produced non-iconic signs with shorter durations than iconic signs. Thus, parents sign more quickly with older children than younger children, and iconic signs appear to resist that reduction in sign length. It is possible that iconic signs are perceptually available longer, and their availability is a candidate hypothesis as to why iconic signs are overrepresented in children’s vocabularies.more » « less
-
null (Ed.)Abstract ASL-LEX is a publicly available, large-scale lexical database for American Sign Language (ASL). We report on the expanded database (ASL-LEX 2.0) that contains 2,723 ASL signs. For each sign, ASL-LEX now includes a more detailed phonological description, phonological density and complexity measures, frequency ratings (from deaf signers), iconicity ratings (from hearing non-signers and deaf signers), transparency (“guessability”) ratings (from non-signers), sign and videoclip durations, lexical class, and more. We document the steps used to create ASL-LEX 2.0 and describe the distributional characteristics for sign properties across the lexicon and examine the relationships among lexical and phonological properties of signs. Correlation analyses revealed that frequent signs were less iconic and phonologically simpler than infrequent signs and iconic signs tended to be phonologically simpler than less iconic signs. The complete ASL-LEX dataset and supplementary materials are available at https://osf.io/zpha4/ and an interactive visualization of the entire lexicon can be accessed on the ASL-LEX page: http://asl-lex.org/.more » « less