Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Parsch, John (Ed.)Abstract Supergenes underlying complex trait polymorphisms ensure sets of coadapted alleles remain genetically linked. Despite their prevalence in nature, the mechanisms of supergene effects on genome regulation are poorly understood. In the fire ant Solenopsis invicta, a supergene containing over 500 individual genes influences trait variation in multiple castes to collectively underpin a colony level social polymorphism. Here, we present results of an integrative investigation of supergene effects on gene regulation. We present analyses of ATAC-seq data to investigate variation in chromatin accessibility by supergene genotype and STARR-seq data to characterize enhancer activity by supergene haplotype. Integration with gene co-expression analyses, newly mapped intact transposable elements (TEs), and previously identified copy number variants (CNVs), collectively reveal widespread effects of the supergene on chromatin structure, gene transcription, and regulatory element activity, with a genome-wide bias for open chromatin and increased expression in the presence of the derived supergene haplotype, particularly in regions that harbor intact TEs. Integrated consideration of CNVs and regulatory element divergence suggests each evolved in concert to shape the expression of supergene encoded factors, including several transcription factors that may directly contribute to the trans-regulatory footprint of a heteromorphic social chromosome. Overall, we show how genome structure in the form of a supergene has wide-reaching effects on gene regulation and gene expression.more » « less
-
Characterizing molecular underpinnings of plastic traits and balanced polymorphisms represent two important goals of evolutionary biology. Fire ant gynes (pre-reproductive queens) provide an ideal system to study potential links between these phenomena because they exhibit both supergene-mediated polymorphism and nutritional plasticity in weight and colony-founding behavior. Gynes with the inversion supergene haplotype are lightweight and depend on existing workers to initiate reproduction. Gynes with only the ancestral, non-inverted gene arrangement accumulate more nutrient reserves as adults and, in a distinct colony-founding behavior, initiate reproduction without help from workers. However, when such gynes overwinter in the natal nest they develop an environmentally induced lightweight phenotype and colony-founding behavior, similar to gynes with the inversion haplotype that have not overwintered. To evaluate the extent of shared mechanisms between plasticity and balanced polymorphism in fire ant gyne traits, we assessed whether genes with expression variation linked to overwintering plasticity may be affected by evolutionary divergence between supergene haplotypes. To do so, we first compared transcriptional profiles of brains and ovaries from overwintered and non-overwintered gynes to identify plasticity-associated genes. These genes were enriched for metabolic and behavioral functions. Next, we compared plasticity-associated genes to those differentially expressed by supergene genotype, revealing a significant overlap of the two sets in ovarian tissues. We also identified sequence substitutions between supergene variants of multiple plasticity-associated genes, consistent with a scenario in which an ancestrally plastic phenotype responsive to an environmental condition became increasingly genetically regulated.more » « less
-
Knolhoff, Lisa (Ed.)Abstract Insects have evolved remarkably complex social systems. Social wasps are particularly noteworthy because they display gradations in social behaviors. Here, we sequence the genomes of two highly diverged Vespula wasps, V. squamosa and V. maculifrons Buysson (Hymenoptera: Vespidae), to gain greater insight into the evolution of sociality. Both V. squamosa and V. maculifrons are social wasps that live in large colonies characterized by distinct queen and worker castes. However, V. squamosa is a facultative social parasite, and V. maculifrons is its frequent host. We found that the genomes of both species were ~200 Mbp in size, similar to the genome sizes of congeneric species. Analyses of gene expression from members of different castes and developmental stages revealed similarities in expression patterns among immature life stages. We also found evidence of DNA methylation within the genome of both species by directly analyzing DNA sequence reads. Moreover, genes that were highly and uniformly expressed were also relatively highly methylated. We further uncovered evidence of differences in patterns of molecular evolution in the two taxa, consistent with V. squamosa exhibiting alterations in evolutionary pressures associated with its facultatively parasitic or polygyne life history. Finally, rates of gene evolution were correlated with variation in gene expression between castes and developmental stages, as expected if more highly expressed genes were subject to stronger levels of selection. Overall, this study expands our understanding of how social behavior relates to genome evolution in insects.more » « less
-
Abstract Background The tobacco thrips ( Frankliniella fusca Hinds; family Thripidae; order Thysanoptera) is an important pest that can transmit viruses such as the tomato spotted wilt orthotospovirus to numerous economically important agricultural row crops and vegetables. The structural and functional genomics within the order Thysanoptera has only begun to be explored. Within the > 7000 known thysanopteran species, the melon thrips ( Thrips palmi Karny) and the western flower thrips ( Frankliniella occidentalis Pergrande) are the only two thysanopteran species with assembled genomes. Results A genome of F. fusca was assembled by long-read sequencing of DNA from an inbred line. The final assembly size was 370 Mb with a single copy ortholog completeness of ~ 99% with respect to Insecta. The annotated genome of F. fusca was compared with the genome of its congener, F. occidentalis . Results revealed many instances of lineage-specific differences in gene content. Analyses of sequence divergence between the two Frankliniella species’ genomes revealed substitution patterns consistent with positive selection in ~ 5% of the protein-coding genes with 1:1 orthologs. Further, gene content related to its pest status, such as xenobiotic detoxification and response to an ambisense-tripartite RNA virus (orthotospovirus) infection was compared with F. occidentalis . Several F. fusca genes related to virus infection possessed signatures of positive selection. Estimation of CpG depletion, a mutational consequence of DNA methylation, revealed that F. fusca genes that were downregulated and alternatively spliced in response to virus infection were preferentially targeted by DNA methylation. As in many other insects, DNA methylation was enriched in exons in Frankliniella , but gene copies with homology to DNA methyltransferase 3 were numerous and fragmented. This phenomenon seems to be relatively unique to thrips among other insect groups. Conclusions The F. fusca genome assembly provides an important resource for comparative genomic analyses of thysanopterans. This genomic foundation allows for insights into molecular evolution, gene regulation, and loci important to agricultural pest status.more » « less
An official website of the United States government
