skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cavaglia, Marco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Gravitational wave (GW) interferometers are able to detect a change in distance of ~1/10 000th the size of a proton. Such sensitivity leads to large rates of non-gaussian, transient bursts of noise, also known as glitches, which hinder the detection and parameter estimation of short- and long-lived GW signals in the main detector strain. Glitches, come in a wide range of frequency-amplitude-time morphologies and may be caused by environmental or instrumental processes, so a key step towards their mitigation is to understand their population. Current approaches for their identification use supervised models to learn their morphology in the main strain with a fixed set of classes, but do not consider relevant information provided by auxiliary channels that monitor the state of the interferometers. In this work, we present an unsupervised algorithm to find anomalous glitches. Firstly, we encode a subset of auxiliary channels from Laser Interferometer Gravitational-Wave Observatory Livingston in the fractal dimension (FD), which measures the complexity of the signal. For this aim, we speed up the fractal dimension calculation to encode 1 h of data in 11 s. Secondly, we learn the underlying distribution of the data using an autoencoder with cyclic periodic convolutions. In this way, we learn the underlying distribution of glitches and we uncover unknown glitch morphologies, and overlaps in time between different glitches and misclassifications. This led to the discovery of 6.6 % anomalies in the input data. The results of this investigation stress the learnable structure of auxiliary channels encoded in FD and provide a flexible framework for glitch discovery. 
    more » « less
  2. Abstract We present a new method, based on fractal analysis, to characterize the output of a physical detector that is in the form of a set of real-valued, discrete physical measurements. We apply the method to gravitational-wave data from the latest observing run of the Laser Interferometer Gravitational-wave Observatory. We show that a measure of the fractal dimension of the main detector output (strain channel) can be used to determine the instrument status, test data stationarity, and identify non-astrophysical excess noise in low latency. When applied to instrument control and environmental data (auxiliary channels) the fractal dimension can be used to identify the origins of noise transients, non-linear couplings in the various detector subsystems, and provide a means to flag stretches of low-quality data. 
    more » « less
  3. null (Ed.)
  4. Multimessenger searches for binary neutron star (BNS) and neutron star-black hole (NSBH) mergers are currently one of the most exciting areas of astronomy. The search for joint electromagnetic and neutrino counterparts to gravitational wave (GW)s has resumed with ALIGO’s, AdVirgo’s and KAGRA’s fourth observing run (O4). To support this effort, public semiautomated data products are sent in near real-time and include localization and source properties to guide complementary observations. In preparation for O4, we have conducted a study using a simulated population of compact binaries and a mock data challenge (MDC) in the form of a real-time replay to optimize and profile the software infrastructure and scientific deliverables. End-toend performance was tested, including data ingestion, running online search pipelines, performing annotations, and issuing alerts to the astrophysics community. We present an overview of the low-latency infrastructure and the performance of the data products that are now being released during O4 based on the MDC. We report the expected median latency for the preliminary alert of full bandwidth searches (29.5 s) and show consistency and accuracy of released data products using the MDC. We report the expected median latency for triggers from early warning searches (−3.1 s), which are new in O4 and target neutron star mergers during inspiral phase. This paper provides a performance overview for LIGO-Virgo-KAGRA (LVK) low-latency alert infrastructure and data products using theMDCand serves as a useful reference for the interpretation of O4 detections. 
    more » « less