skip to main content


Title: Characterization of gravitational-wave detector noise with fractals
Abstract We present a new method, based on fractal analysis, to characterize the output of a physical detector that is in the form of a set of real-valued, discrete physical measurements. We apply the method to gravitational-wave data from the latest observing run of the Laser Interferometer Gravitational-wave Observatory. We show that a measure of the fractal dimension of the main detector output (strain channel) can be used to determine the instrument status, test data stationarity, and identify non-astrophysical excess noise in low latency. When applied to instrument control and environmental data (auxiliary channels) the fractal dimension can be used to identify the origins of noise transients, non-linear couplings in the various detector subsystems, and provide a means to flag stretches of low-quality data.  more » « less
Award ID(s):
2011334
NSF-PAR ID:
10327954
Author(s) / Creator(s):
Date Published:
Journal Name:
Classical and Quantum Gravity
ISSN:
0264-9381
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a method to characterize the noise in ground-based gravitational-wave observatories such as the Laser Gravitational-Wave Observatory (LIGO). This method uses linear regression algorithms such as the least absolute shrinkage and selection operator to identify noise sources and analyzes the detector output vs noise witness sensors to quantify the coupling of such noise. Our method can be implemented with currently available resources at LIGO, which avoids extra coding or direct experimentation at the LIGO sites. We present two examples to validate and estimate the coupling of elevated ground motion at frequencies below 10 Hz with noise in the detector output.

     
    more » « less
  2. The post-Newtonian formalism plays an integral role in the models used to extract information from gravitational wave data, but models that incorporate this formalism are inherently approximations. Disagreement between an approximate model and nature will produce mismodeling biases in the parameters inferred from data, introducing systematic error. We here carry out a proof-of- principle study of such systematic error by considering signals produced by quasi-circular, inspiraling black hole binaries through an injection and recovery campaign. In particular, we study how un- known, but calibrated, higher-order post-Newtonian corrections to the gravitational wave phase impact systematic error in recovered parameters. As a first study, we produce injected data of non-spinning binaries as detected by a current, second-generation network of ground-based observatories and recover them with models of varying PN order in the phase. We find that the truncation of higher order (>3.5) post-Newtonian corrections to the phase can produce significant systematic error even at signal-to-noise ratios of current detector networks. We propose a method to mitigate systematic error by marginalizing over our ignorance in the waveform through the inclusion of higher-order post-Newtonian coefficients as new model parameters. We show that this method can reduce systematic error greatly at the cost of increasing statistical error. 
    more » « less
  3. null (Ed.)
    Noise due to scattered light has been a frequent disturbance in the advanced LIGO gravitational wave detectors, hindering the detection of gravitational waves. The non stationary scatter noise caused by low frequency motion can be recognized as arches in the time-frequency plane of the gravitational wave channel. In this paper, we characterize the scattering noise for LIGO and Virgo's third observing run O3 from April, 2019 to March, 2020. We find at least two different populations of scattering noise and we investigate the multiple origins of one of them as well as its mitigation. We find that relative motion between two specific surfaces is strongly correlated with the presence of scattered light and we implement a technique to reduce this motion. We also present an algorithm using a witness channel to identify the times this noise can be present in the detector. 
    more » « less
  4. We present a new method which accounts for changes in the properties of gravitational-wave detector noise over time in the PyCBC search for gravitational waves from compact binary coalescences. We use information from LIGO data quality streams that monitor the status of each detector and its environment to model changes in the rate of noise in each detector. These data quality streams allow candidates identified in the data during periods of detector malfunctions to be more efficiently rejected as noise. This method allows data from machine learning predictions of the detector state to be included as part of the PyCBC search, increasing the total number of detectable gravitational-wave signals by up to 5%. When both machine learning classifications and manually generated flags are used to search data from LIGO-Virgo’s third observing run, the total number of detectable gravitational-wave signals is increased by up to 20% compared to not using any data quality streams. We also show how this method is flexible enough to include information from large numbers of additional arbitrary data streams that may be able to further increase the sensitivity of the search. 
    more » « less
  5. Abstract

    Understanding the noise in gravitational-wave detectors is central to detecting and interpreting gravitational-wave signals. Glitches are transient, non-Gaussian noise features that can have a range of environmental and instrumental origins. The Gravity Spy project uses a machine-learning algorithm to classify glitches based upon their time–frequency morphology. The resulting set of classified glitches can be used as input to detector-characterisation investigations of how to mitigate glitches, or data-analysis studies of how to ameliorate the impact of glitches. Here we present the results of the Gravity Spy analysis of data up to the end of the third observing run of advanced laser interferometric gravitational-wave observatory (LIGO). We classify 233981 glitches from LIGO Hanford and 379805 glitches from LIGO Livingston into morphological classes. We find that the distribution of glitches differs between the two LIGO sites. This highlights the potential need for studies of data quality to be individually tailored to each gravitational-wave observatory.

     
    more » « less