Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
Abstract. The complex refractive index (CRI; n−ik) and the single scattering albedo (SSA) are key parameters driving the aerosol direct radiative effect. Their spatial, temporal, and spectral variabilities in anthropogenic–biogenic mixed environments are poorly understood. In this study, we retrieve the spectral CRI and SSA (370–950 nm wavelength range) from in situ surface optical measurements and the number size distribution of submicron aerosols at three sites in the greater Paris area, representative of the urban city, as well as its peri-urban and forested rural environments. Measurements were taken as part of the ACROSS (Atmospheric Chemistry of the Suburban Forest) campaign in June–July 2022 under diversified conditions: (1) two heatwaves leading to high aerosol levels, (2) an intermediate period with low aerosol concentrations, and (3) an episode of long-range-transported fire emissions. The retrieved CRI and SSA exhibit an urban-to-rural gradient, whose intensity is modulated by the weather conditions. A full campaign average CRI of 1.41−0.037i (urban), 1.52−0.038i (peri-urban), and 1.50−0.025i (rural) is retrieved. The imaginary part of the CRI (k) increases and the SSA decreases at the peri-urban and forest sites when exposed to the influence of the Paris urban plume. Values of k > 0.1 and SSA < 0.6 at 520 nm are related to a black carbon mass fraction larger than 10 %. Organic aerosols are found to contribute to more than 50 % of the aerosol mass and up to 10 % (urban), 17 % (peri-urban), and 22 % (forest) of the aerosol absorption coefficient at 370 nm. A k value of 0.022 (370 nm) was measured at the urban site for the long-range-transported fire episode.more » « lessFree, publicly-accessible full text available March 14, 2026
-
Brown Carbon Aerosol Formation by Multiphase Catechol Photooxidation in the Presence of Soluble IronCatechol (1,2-benzenediol), a common phenolic species emitted during biomass burning, is both redox active and metal chelating. When oxidized by OH radicals in the aqueous phase, it rapidly forms brown carbon (BrC). Here, we report chamber studies of the multiphase chemistry of catechol using HOOH as an OH radical source, soluble iron, simulated sunlight, and either deliquesced or solid-phase seed particles. BrC of remarkable similarity (MAC365 = 1.7 ±0.2 m2 g-1, “medium-BrC” category) was produced whenever gas-phase catechol was photolyzed in the chamber, with or without the presence of an OH radical source, soluble iron, or deliquesced aerosol. The speed and quantity of BrC formation varied, however. While BrC production was slower in the absence of an OH radical source, multiple lines of evidence suggest that OH generation via photosensitization by surface-adsorbed catechol can still generate BrC. Fenton chemistry actively occurred in surface-adsorbed water layers even below the seed particle deliquescence point, leading to significant production of gas-phase benzoquinone. Ratios of BrC and secondary organic aerosol (SOA) relative to catechol concentrations were highest in the presence of trace amounts of soluble iron, HOOH, and simulated sunlight, indicating that photo-Fenton chemistry contributed substantially to BrC and SOA formation by catechol. Finally, we observed that BrC and SOA formation by catechol / photo-Fenton chemistry can occur efficiently even at 40% RH. These results are consistent with catechol being a major source of secondary BrC in biomass burning plumes, even at moderate relative humidity.more » « less
-
Guaiacol, present in wood smoke, readily forms secondary organic aerosol (SOA), and, in the aqueous phase, brown carbon (BrC) species. Here, BrC is produced in an illuminated chamber containing guaiacol(g), HOOH(g) as an OH radical source, and either deliquesced salt particles or guaiacol SOA at 50% relative humidity. BrC production slows without an OH source (HOOH), likely due to low levels of radical generation by photosensitization, perhaps involving surface-adsorbed guaiacol and dissolved oxygen. With or without HOOH, BrC mass absorption coefficients at 365 nm generated by the guaiacol + OH reaction reach a maximum at ~6 h of atmospheric OH exposure, after which photobleaching becomes dominant. In the presence of soluble iron but no HOOH, more BrC is produced, likely due to insoluble polymer production observed in previous studies. However, with both soluble iron and HOOH (enabling Fenton chemistry), significantly less SOA and BrC are produced due to very high oxidation rates, and the average SOA carbon oxidation state reaches 2, indicating carboxylate products like oxalate. These results indicate that SOA and BrC formation by guaiacol photooxidation can take place over a wider range of atmospheric conditions than previously thought, and that the effects of iron(II) depend on HOOH. Multiphase guaiacol photooxidation likely makes a significant contribution to producing highly oxidized SOA material in smoke plumes.more » « less
-
null (Ed.)Abstract. Alpha-dicarbonyl compounds are believed to form browncarbon in the atmosphere via reactions with ammonium sulfate (AS) in clouddroplets and aqueous aerosol particles. In this work, brown carbon formationin AS and other aerosol particles was quantified as a function of relativehumidity (RH) during exposure to gas-phase glyoxal (GX) in chamberexperiments. Under dry conditions (RH < 5 %), solid AS,AS–glycine, and methylammonium sulfate (MeAS) aerosol particles brown withinminutes upon exposure to GX, while sodium sulfate particles do not. When GXconcentrations decline, browning goes away, demonstrating that this drybrowning process is reversible. Declines in aerosol albedo are found to be afunction of [GX]2 and are consistent between AS and AS–glycineaerosol. Dry methylammonium sulfate aerosol browns 4 times more than dryAS aerosol, but deliquesced AS aerosol browns much less than dry AS aerosol.Optical measurements at 405, 450, and 530 nm provide an estimatedÅngstrom absorbance coefficient of -16±4. This coefficient andthe empirical relationship between GX and albedo are used to estimate anupper limit to global radiative forcing by brown carbon formed by 70 ppt GXreacting with AS (+7.6×10-5 W m−2). This quantity is< 1 % of the total radiative forcing by secondary brown carbonbut occurs almost entirely in the ultraviolet range.more » « less
An official website of the United States government
