skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cenedese, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A broad class of natural and man-made systems exhibits rich patterns of cluster synchronization in healthy and diseased states, where different groups of interconnected oscillators converge to cohesive yet distinct behaviors. To provide a rigorous characterization of cluster synchronization, we study networks of heterogeneous Kuramoto oscillators and we quantify how the intrinsic features of the oscillators and their interconnection parameters affect the formation and the stability of clustered configurations. Our analysis shows that cluster synchronization depends on a graded combination of strong intra-cluster and weak inter-cluster connections, similarity of the natural frequencies of the oscillators within each cluster, and heterogeneity of the natural frequencies of coupled oscillators belonging to different groups. The analysis leverages linear and nonlinear control theoretic tools, and it is numerically validated. 
    more » « less
  2. In this paper we study cluster synchronization in a network of Kuramoto oscillators, where groups of oscillators evolve cohesively and at different frequencies from the neigh- boring oscillators. Synchronization is critical in a variety of systems, where it enables complex functionalities and behaviors. Synchronization over networks depends on the oscillators’ dynamics, the interaction topology, and coupling strengths, and the relationship between these different factors can be quite intricate. In this work we formally show that three network properties enable the emergence of cluster synchronization. Specifically, weak inter-cluster connections, strong intra-cluster connections, and sufficiently diverse natural frequencies among oscillators belonging to different groups. Our approach relies on system-theoretic tools, and is validated with numerical studies. 
    more » « less