Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We search for dark matter in the form of axionlike particles (ALPs) in the mass range by probing their possible coupling to fermion spins through the ALP field gradient. This is achieved by performing proton nuclear magnetic resonance spectroscopy on a sample of methanol as a technical demonstration of the Cosmic Axion Spin Precession Experiment Gradient (CASPEr-Gradient) Low-Field apparatus. Searching for spin-coupled ALP dark matter in this mass range with associated Compton frequencies in a 240 Hz window centered at 1.348570 MHZ resulted in a sensitivity to the ALP-proton coupling constant of . This narrow-bandwidth search serves as a proof-of-principle and a commissioning measurement, validating our methodology and demonstrating the experiment’s capabilities. CASPEr-Gradient Low-Field will probe the mass range from to with hyperpolarized samples to boost the sensitivity beyond the astronomical limits.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract Numerous theories extending beyond the standard model of particle physics predict the existence of bosons that could constitute dark matter. In the standard halo model of galactic dark matter, the velocity distribution of the bosonic dark matter field defines a characteristic coherence time τ c . Until recently, laboratory experiments searching for bosonic dark matter fields have been in the regime where the measurement time T significantly exceeds τ c , so null results have been interpreted by assuming a bosonic field amplitude Φ 0 fixed by the average local dark matter density. Here we show that experiments operating in the T ≪ τ c regime do not sample the full distribution of bosonic dark matter field amplitudes and therefore it is incorrect to assume a fixed value of Φ 0 when inferring constraints. Instead, in order to interpret laboratory measurements (even in the event of a discovery), it is necessary to account for the stochastic nature of such a virialized ultralight field. The constraints inferred from several previous null experiments searching for ultralight bosonic dark matter were overestimated by factors ranging from 3 to 10 depending on experimental details, model assumptions, and choice of inference framework.more » « less
-
The nature of dark matter, the invisible substance making up over 80% of the matter in the universe, is one of the most fundamental mysteries of modern physics. Ultralight bosons such as axions, axion-like particles, or dark photons could make up most of the dark matter. Couplings between such bosons and nuclear spins may enable their direct detection via nuclear magnetic resonance (NMR) spectroscopy: As nuclear spins move through the galactic dark-matter halo, they couple to dark matter and behave as if they were in an oscillating magnetic field, generating a dark-matter–driven NMR signal. As part of the cosmic axion spin precession experiment (CASPEr), an NMR-based dark-matter search, we use ultralow-field NMR to probe the axion-fermion “wind” coupling and dark-photon couplings to nuclear spins. No dark matter signal was detected above background, establishing new experimental bounds for dark matter bosons with masses ranging from 1.8 × 10 −16 to 7.8 × 10 −14 eV.more » « less
An official website of the United States government

Full Text Available