skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Chakma, Avijoy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ubiquitousness of smart and wearable devices with integrated acoustic sensors in modern human lives presents tremendous opportunities for recognizing human activities in our living spaces through ML-driven applications. However, their adoption is often hindered by the requirement of large amounts of labeled data during the model training phase. Integration of contextual metadata has the potential to alleviate this since the nature of these meta-data is often less dynamic (e.g. cleaning dishes, and cooking both can happen in the kitchen context) and can often be annotated in a less tedious manner (a sensor always placed in the kitchen). However, most models do not have good provisions for the integration of such meta-data information. Often, the additional metadata is leveraged in the form of multi-task learning with sub-optimal outcomes. On the other hand, reliably recognizing distinct in-home activities with similar acoustic patterns (e.g. chopping, hammering, knife sharpening) poses another set of challenges. To mitigate these challenges, we first show in our preliminary study that the room acoustics properties such as reverberation, room materials, and background noise leave a discernible fingerprint in the audio samples to recognize the room context and proposed AcouDL as a unified framework to exploit room context information to improve activity recognition performance. Our proposed self-supervision-based approach first learns the context features of the activities by leveraging a large amount of unlabeled data using a contrastive learning mechanism and then incorporates this feature induced with a novel attention mechanism into the activity classification pipeline to improve the activity recognition performance. Extensive evaluation of AcouDL on three datasets containing a wide range of activities shows that such an efficient feature fusion-mechanism enables the incorporation of metadata that helps to better recognition of the activities under challenging classification scenarios with 0.7-3.5% macro F1 score improvement over the baselines. 
    more » « less
    Free, publicly-accessible full text available June 29, 2025
  2. The scarcity of labeled data has traditionally been the primary hindrance in building scalable supervised deep learning models that can retain adequate performance in the presence of various heterogeneities in sample distributions. Domain adaptation tries to address this issue by adapting features learned from a smaller set of labeled samples to that of the incoming unlabeled samples. The traditional domain adaptation approaches normally consider only a single source of labeled samples, but in real world use cases, labeled samples can originate from multiple-sources – providing motivation for multi-source domain adaptation (MSDA). Several MSDA approaches have been investigated for wearable sensor-based human activity recognition (HAR) in recent times, but their performance improvement compared to single source counterpart remained marginal. To remedy this performance gap that, we explore multiple avenues to align the conditional distributions in addition to the usual alignment of marginal ones. In our investigation, we extend an existing multi-source domain adaptation approach under semi-supervised settings. We assume the availability of partially labeled target domain data and further explore the pseudo labeling usage with a goal to achieve a performance similar to the former. In our experiments on three publicly available datasets, we find that a limited labeled target domain data and pseudo label data boost the performance over the unsupervised approach by 10-35% and 2-6%, respectively, in various domain adaptation scenarios. 
    more » « less
  3. We explore the effect of auxiliary labels in improving the classification accuracy of wearable sensor-based human activity recognition (HAR) systems, which are primarily trained with the supervision of the activity labels (e.g. running, walking, jumping). Supplemental meta-data are often available during the data collection process such as body positions of the wearable sensors, subjects' demographic information (e.g. gender, age), and the type of wearable used (e.g. smartphone, smart-watch). This information, while not directly related to the activity classification task, can nonetheless provide auxiliary supervision and has the potential to significantly improve the HAR accuracy by providing extra guidance on how to handle the introduced sample heterogeneity from the change in domains (i.e positions, persons, or sensors), especially in the presence of limited activity labels. However, integrating such meta-data information in the classification pipeline is non-trivial - (i) the complex interaction between the activity and domain label space is hard to capture with a simple multi-task and/or adversarial learning setup, (ii) meta-data and activity labels might not be simultaneously available for all collected samples. To address these issues, we propose a novel framework Conditional Domain Embeddings (CoDEm). From the available unlabeled raw samples and their domain meta-data, we first learn a set of domain embeddings using a contrastive learning methodology to handle inter-domain variability and inter-domain similarity. To classify the activities, CoDEm then learns the label embeddings in a contrastive fashion, conditioned on domain embeddings with a novel attention mechanism, enforcing the model to learn the complex domain-activity relationships. We extensively evaluate CoDEm in three benchmark datasets against a number of multi-task and adversarial learning baselines and achieve state-of-the-art performance in each avenue. 
    more » « less