skip to main content


Search for: All records

Creators/Authors contains: "Chandra, Vedant"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Magellanic Stream (MS)—an enormous ribbon of gas spanning 140° of the southern sky trailing the Magellanic Clouds—has been exquisitely mapped in the five decades since its discovery. However, despite concerted efforts, no stellar counterpart to the MS has been conclusively identified. This stellar stream would reveal the distance and 6D kinematics of the MS, constraining its formation and the past orbital history of the Clouds. We have been conducting a spectroscopic survey of the most distant and luminous red giant stars in the Galactic outskirts. From this data set, we have discovered a prominent population of 13 stars matching the extreme angular momentum of the Clouds, spanning up to 100° along the MS at distances of 60–120 kpc. Furthermore, these kinematically selected stars lie along an [α/Fe]-deficient track in chemical space from −2.5 < [Fe/H] <− 0.5, consistent with their formation in the Clouds themselves. We identify these stars as high-confidence members of the Magellanic Stellar Stream. Half of these stars are metal-rich and closely follow the gaseous MS, whereas the other half are more scattered and metal-poor. We argue that the metal-rich stream is the recently formed tidal counterpart to the MS, and we speculate that the metal-poor population was thrown out of the SMC outskirts during an earlier interaction between the Clouds. The Magellanic Stellar Stream provides a strong set of constraints—distances, 6D kinematics, and birth locations—that will guide future simulations toward unveiling the detailed history of the Clouds.

     
    more » « less
  2. Free, publicly-accessible full text available July 27, 2024
  3. Abstract

    The majority of the Milky Way’s stellar halo consists of debris from our galaxy’s last major merger, the Gaia-Sausage-Enceladus (GSE). In the past few years, stars from the GSE have been kinematically and chemically studied in the inner 30 kpc of our galaxy. However, simulations predict that accreted debris could lie at greater distances, forming substructures in the outer halo. Here we derive metallicities and distances using Gaia DR3 XP spectra for an all-sky sample of luminous red giant stars, and map the outer halo with kinematics and metallicities out to 100 kpc. We obtain follow-up spectra of stars in two strong overdensities—including the previously identified outer Virgo Overdensity—and find them to be relatively metal rich and on predominantly retrograde orbits, matching predictions from simulations of the GSE merger. We argue that these are apocentric shells of GSE debris, forming 60–90 kpc counterparts to the 15–20 kpc shells that are known to dominate the inner stellar halo. Extending our search across the sky with literature radial velocities, we find evidence for a coherent stream of retrograde stars encircling the Milky Way from 50 to 100 kpc, in the same plane as the Sagittarius Stream but moving in the opposite direction. These are the first discoveries of distant and structured imprints from the GSE merger, cementing the picture of an inclined and retrograde collision that built up our galaxy’s stellar halo.

     
    more » « less
  4. Abstract Modern Galactic surveys have revealed an ancient merger that dominates the stellar halo of our galaxy (Gaia–Sausage–Enceladus, GSE). Using chemical abundances and kinematics from the H3 Survey, we identify 5559 halo stars from this merger in the radial range r Gal = 6–60kpc. We forward model the full selection function of H3 to infer the density profile of this accreted component of the stellar halo. We consider a general ellipsoid with principal axes allowed to rotate with respect to the galactocentric axes, coupled with a multiply broken power law. The best-fit model is a triaxial ellipsoid (axes ratios 10:8:7) tilted 25° above the Galactic plane toward the Sun and a doubly broken power law with breaking radii at 12 kpc and 28 kpc. The doubly broken power law resolves a long-standing dichotomy in literature values of the halo breaking radius, being at either ∼15 kpc or ∼30 kpc assuming a singly broken power law. N -body simulations suggest that the breaking radii are connected to apocenter pile-ups of stellar orbits, and so the observed double-break provides new insight into the initial conditions and evolution of the GSE merger. Furthermore, the tilt and triaxiality of the stellar halo could imply that a fraction of the underlying dark matter halo is also tilted and triaxial. This has important implications for dynamical mass modeling of the galaxy as well as direct dark matter detection experiments. 
    more » « less
  5. Abstract

    Recent observations of the stellar halo have uncovered the debris of an ancient merger, Gaia–Sausage–Enceladus (GSE), estimated to have occurred ≳8 Gyr ago. Follow-up studies have associated GSE with a large-scale tilt in the stellar halo that links two well-known stellar overdensities in diagonally opposing octants of the Galaxy (the Hercules–Aquila Cloud and Virgo Overdensity; HAC and VOD). In this paper, we study the plausibility of such unmixed merger debris persisting over several gigayears in the Galactic halo. We employ the simulated stellar halo from Naidu et al., which reproduces several key properties of the merger remnant, including the large-scale tilt. By integrating the orbits of these simulated stellar halo particles, we show that adoption of a spherical halo potential results in rapid phase mixing of the asymmetry. However, adopting a tilted halo potential preserves the initial asymmetry in the stellar halo for many gigayears. The asymmetry is preserved even when a realistic growing disk is added to the potential. These results suggest that HAC and VOD are long-lived structures that are associated with GSE and that the dark matter halo of the Galaxy is tilted with respect to the disk and aligned in the direction of HAC–VOD. Such halo–disk misalignment is common in modern cosmological simulations. Lastly, we study the relationship between the local and global stellar halo in light of a tilted global halo comprised of highly radial orbits. We find that the local halo offers a dynamically biased view of the global halo due to its displacement from the Galactic center.

     
    more » « less
  6. Abstract

    Stars that formed with an initial mass of over 50Mare very rare today, but they are thought to be more common in the early Universe. The fates of those early, metal-poor, massive stars are highly uncertain. Most are expected to directly collapse to black holes, while some may explode as a result of rotationally powered engines or the pair-creation instability. We present the chemical abundances of J0931+0038, a nearby low-mass star identified in early follow-up of the SDSS-V Milky Way Mapper, which preserves the signature of unusual nucleosynthesis from a massive star in the early Universe. J0931+0038 has a relatively high metallicity ([Fe/H] = −1.76 ± 0.13) but an extreme odd–even abundance pattern, with some of the lowest known abundance ratios of [N/Fe], [Na/Fe], [K/Fe], [Sc/Fe], and [Ba/Fe]. The implication is that a majority of its metals originated in a single extremely metal-poor nucleosynthetic source. An extensive search through nucleosynthesis predictions finds a clear preference for progenitors with initial mass >50M, making J0931+0038 one of the first observational constraints on nucleosynthesis in this mass range. However, the full abundance pattern is not matched by any models in the literature. J0931+0038 thus presents a challenge for the next generation of nucleosynthesis models and motivates the study of high-mass progenitor stars impacted by convection, rotation, jets, and/or binary companions. Though rare, more examples of unusual early nucleosynthesis in metal-poor stars should be found in upcoming large spectroscopic surveys.

     
    more » « less
  7. Abstract

    We report the discovery of Specter, a disrupted ultrafaint dwarf galaxy revealed by the H3 Spectroscopic Survey. We detected this structure via a pair of comoving metal-poor stars at a distance of 12.5 kpc, and further characterized it with Gaia astrometry and follow-up spectroscopy. Specter is a 25° × 1° stream of stars that is entirely invisible until strict kinematic cuts are applied to remove the Galactic foreground. The spectroscopic members suggest a stellar ageτ≳ 12 Gyr and a mean metallicity[Fe/H]=1.840.18+0.16, with a significant intrinsic metallicity dispersionσ[Fe/H]=0.370.13+0.21. We therefore argue that Specter is the disrupted remnant of an ancient dwarf galaxy. With an integrated luminosityMV≈ −2.6, Specter is by far the least-luminous dwarf galaxy stream known. We estimate that dozens of similar streams are lurking below the detection threshold of current search techniques, and conclude that spectroscopic surveys offer a novel means to identify extremely low surface brightness structures.

     
    more » « less
  8. Abstract The astrophysical origins of r -process elements remain elusive. Neutron star mergers (NSMs) and special classes of core-collapse supernovae (rCCSNe) are leading candidates. Due to these channels’ distinct characteristic timescales (rCCSNe: prompt, NSMs: delayed), measuring r -process enrichment in galaxies of similar mass but differing star formation durations might prove informative. Two recently discovered disrupted dwarfs in the Milky Way’s stellar halo, Kraken and Gaia-Sausage Enceladus (GSE), afford precisely this opportunity: Both have M ⋆ ≈ 10 8 M ⊙ but differing star formation durations of ≈2 Gyr and ≈3.6 Gyr. Here we present R ≈ 50,000 Magellan/MIKE spectroscopy for 31 stars from these systems, detecting the r -process element Eu in all stars. Stars from both systems have similar [Mg/H] ≈ −1, but Kraken has a median [Eu/Mg] ≈ −0.1 while GSE has an elevated [Eu/Mg] ≈ 0.2. With simple models, we argue NSM enrichment must be delayed by 500–1000 Myr to produce this difference. rCCSNe must also contribute, especially at early epochs, otherwise stars formed during the delay period would be Eu free. In this picture, rCCSNe account for ≈50% of the Eu in Kraken, ≈25% in GSE, and ≈15% in dwarfs with extended star formation durations like Sagittarius. The inferred delay time for NSM enrichment is 10×–100× longer than merger delay times from stellar population synthesis—this is not necessarily surprising because the enrichment delay includes time taken for NSM ejecta to be incorporated into subsequent generations of stars. For example, this may be due to natal kicks that result in r -enriched material deposited far from star-forming gas, which then takes ≈10 8 –10 9 yr to cool in these galaxies. 
    more » « less
  9. ABSTRACT

    Due to the different environments in the Milky Way’s disc and halo, comparing wide binaries in the disc and halo is key to understanding wide binary formation and evolution. By using Gaia Early Data Release 3, we search for resolved wide binary companions in the H3 survey, a spectroscopic survey that has compiled ∼150 000 spectra for thick-disc and halo stars to date. We identify 800 high-confidence (a contamination rate of 4 per cent) wide binaries and two resolved triples, with binary separations mostly between 103 and 105 au and a lowest [Fe/H] of −2.7. Based on their Galactic kinematics, 33 of them are halo wide binaries, and most of those are associated with the accreted Gaia-Sausage-Enceladus galaxy. The wide binary fraction in the thick disc decreases toward the low metallicity end, consistent with the previous findings for the thin disc. Our key finding is that the halo wide binary fraction is consistent with the thick-disc stars at a fixed [Fe/H]. There is no significant dependence of the wide binary fraction on the α-captured abundance. Therefore, the wide binary fraction is mainly determined by the iron abundance, not their disc or halo origin nor the α-captured abundance. Our results suggest that the formation environments play a major role for the wide binary fraction, instead of other processes like radial migration that only apply to disc stars.

     
    more » « less
  10. ABSTRACT

    A promising progenitor scenario for Type Ia supernovae (SNeIa) is the thermonuclear detonation of a white dwarf in a close binary system with another white dwarf. After the primary star explodes, the surviving donor can be spontaneously released as a hypervelocity runaway. One such runaway donor candidate is LP 398-9, whose orbital trajectory traces back ≈105 yr to a known supernova remnant. Here, we report the discovery of carbon-rich circumstellar material around LP 398-9, revealed by a strong infrared excess and analysed with follow-up spectroscopy. The circumstellar material is most plausibly composed of inflated layers from the star itself, mechanically and radioactively heated by the past companion’s supernova. We also detect a 15.4 h periodic signal in the UV and optical light curves of LP 398-9, which we interpret as surface rotation. The rotation rate is consistent with theoretical predictions from this supernova mechanism, and the brightness variations could originate from surface inhomogeneity deposited by the supernova itself. Our observations strengthen the case for this double-degenerate SNIa progenitor channel, and motivate the search for more runaway SNIa donors.

     
    more » « less