skip to main content

Search for: All records

Creators/Authors contains: "Chang, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. TcS 2 undergoes a charge transfer insulator to metal transition above 28 GPa. Laser annealing reveals a kinetically hindered high pressure arsenopyrite phase that is recoverable to ambient. The new phase is similar to the Mn-dichalcogenides rather than the expected Re-dichalcogenides and involves the formation of S–S and Tc–Tc bonds. 
    more » « less
  2. null (Ed.)
    As teams of people increasingly incorporate robot members, it is essential to consider how a robot's actions may influence the team's social dynamics and interactions. In this work, we investigated the effects of verbal support from a robot (e.g., “ good idea Salim ,” “ yeah ”) on human team members' interactions related to psychological safety and inclusion. We conducted a between-subjects experiment ( N = 39 groups, 117 participants) where the robot team member either (A) gave verbal support or (B) did not give verbal support to the human team members of a human-robot team comprised of 2 human ingroup members, 1 human outgroup member, and 1 robot. We found that targeted support from the robot (e.g., “ good idea George ”) had a positive effect on outgroup members, who increased their verbal participation after receiving targeted support from the robot. When comparing groups that did and did not have verbal support from the robot, we found that outgroup members received fewer verbal backchannels from ingroup members if their group had robot verbal support. These results suggest that verbal support from a robot may have some direct benefits to outgroup members but may also reduce the obligation ingroup members feel to support the verbal contributions of outgroup members. 
    more » « less
  3. Team member inclusion is vital in collaborative teams. In this work, we explore two strategies to increase the inclusion of human team members in a human-robot team: 1) giving a person in the group a specialized role (the 'robot liaison') and 2) having the robot verbally support human team members. In a human subjects experiment (N = 26 teams, 78 participants), groups of three participants completed two rounds of a collaborative task. In round one, two participants (ingroup) completed a task with a robot in one room, and one participant (outgroup) completed the same task with a robot in a different room. In round two, all three participants and one robot completed a second task in the same room, where one participant was designated as the robot liaison. During round two, the robot verbally supported each participant 6 times on average. Results show that participants with the robot liaison role had a lower perceived group inclusion than the other group members. Additionally, when outgroup members were the robot liaison, the group was less likely to incorporate their ideas into the group's final decision. In response to the robot's supportive utterances, outgroup members, and not ingroup members, showed an increase in the proportion of time they spent talking to the group. Our results suggest that specialized roles may hinder human team member inclusion, whereas supportive robot utterances show promise in encouraging contributions from individuals who feel excluded. 
    more » « less
  4. Abstract Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages. 
    more » « less