skip to main content


Search for: All records

Creators/Authors contains: "Changala, P Bryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the hyperfine-resolved rotational spectrum of the gas-phase phenoxy radical in the 8−25 GHz frequency range using cavity Fourier transform microwave spectroscopy. A complete assignment of its complex but well-resolved fine and hyperfine splittings yielded a precisely determined set of rotational constants, spin-rotation parameters, and nuclear hyperfine coupling constants. These results are interpreted with support from high-level quantum chemical calculations to gain detailed insight into the distribution of the unpaired π electron in this prototypical resonance-stabilized radical. The accurate laboratory rest frequencies enable studies of the chemistry of phenoxy in both the laboratory and space. The prospects of extending the present experimental and theoretical techniques to investigate the rotational spectra of isotopic variants and structural isomers of phenoxy and other important gas-phase radical intermediates that are yet undetected at radio wavelengths are discussed. 
    more » « less
    Free, publicly-accessible full text available May 16, 2025
  2. Large-amplitude vibrational motion influences the rovibrational structure of molecules that tunnel between multiple wells. Reaction path (RP) Hamiltonians, and curvilinear coordinates more gen- erally, are useful for modelling pure vibrational motion in these systems and provide a practical framework for calculating accurate ab initio anharmonic vibrational energies and tunnelling split- tings with perturbation theory. These computational tools also offer the means to address rotation- vibration coupling associated with large-amplitude motion in rotating molecules. In this paper, we incorporate the reduced axis system (RAS) frameembeddingwithRPHamiltoniansandsecond-order vibrational Møller-Plesset perturbation theory (VMP2). Because the RP-RAS Hamiltonian eliminates rotation-vibration momentumcoupling everywhere along a one-dimensional reaction path, it is well suited for rovibrational VMP2 methods, the convergence of which relies critically on approximate vibration-vibration and vibration-rotation separability. The accuracy of this combined RP-RAS-VMP2 scheme is demonstrated by comparisons with numerically exact variational calculations and VMP2 parameters based on traditional Eckart embeddings for reduced-dimension models of torsional tunnelling in hydrogenperoxideandinversion tunnelling in cyclopropyl radical. Thefavourablecom- putational scaling ofVMP2makes it a promising strategy for calculating accurate tunnelling-rotation parameters for medium-sized and larger molecules in full dimensionality. 
    more » « less
    Free, publicly-accessible full text available January 17, 2025
  3. Recent advances in circumstellar metal chemistry and laser-coolable molecules have spurred interest in the spectroscopy and electronic properties of alkaline earth metal-bearing polyatomic molecules. We report the microwave rotational spectra of two members of this important chemical family, the linear magnesium- carbon chains MgC4H and MgC3N, detected with cavity Fourier transform microwave spectroscopy of a laser ablation-electric discharge expansion. The rotation, fine, and hyperfine parameters have been derived from the precise laboratory rest frequencies. These experimental results, combined with a theoretical quantum chemical analysis, confirm the recent identification of MgC4H and MgC3N in the circumstellar envelope of the evolved carbon-rich star IRC+10216. The spectroscopic data also provide insight into the structural and electronic properties that influence the metal-based optical cycling center in this unique class of laser-coolable polyatomics. 
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  4. We report the hyperfine-resolved rotational spectrum of gas-phase phenoxy radical in the 8–25 GHz frequency range using cavity Fourier transform microwave spectroscopy. A complete assignment of its complex but well-resolved fine and hyperfine splittings has yielded a precisely determined set of rotational constants, spin-rotation parameters, and nuclear hyperfine coupling constants. These results are interpreted with support from high-level quantum chemical calculations to gain detailed insight into the distribution of the unpaired π electron in this prototypical resonance-stabilized radical. The accurate laboratory rest frequencies enable studies of the chemistry of phenoxy in both the laboratory and in space. The prospects of extending the present experimental and theoretical techniques to investigate the rotational spectra of isotopic variants and structural isomers of phenoxy and other important gas-phase radical intermediates yet undetected at radio wavelengths are discussed. 
    more » « less
    Free, publicly-accessible full text available January 17, 2025
  5. The unique optical cycling efficiency of alkaline earth metal–ligand molecules has enabled significant advances in polyatomic laser cooling and trapping. Rotational spectroscopy is an ideal tool for probing the molecular properties that underpin optical cycling, thereby elucidating the design principles for expanding the chemical diversity and scope of these platforms for quantum science. We present a comprehensive study of the structure and electronic properties in alkaline earth metal acetylides with high-resolution microwave spectra of 17 isotopologues of MgCCH, CaCCH, and SrCCH in their2Σ+ground electronic states. The precise semiexperimental equilibrium geometry of each species has been derived by correcting the measured rotational constants for electronic and zero-point vibrational contributions calculated with high-level quantum chemistry methods. The well-resolved hyperfine structure associated with the1,2H,13C, and metal nuclear spins provides further information on the distribution and hybridization of the metal-centered, optically active unpaired electron. Together, these measurements allow us to correlate trends in chemical bonding and structure with the electronic properties that promote efficient optical cycling essential to next-generation experiments in precision measurement and quantum control of complex polyatomic molecules.

     
    more » « less
  6. Ergodicity, the central tenet of statistical mechanics, requires an isolated system to explore all available phase space constrained by energy and symmetry. Mechanisms for violating ergodicity are of interest for probing nonequilibrium matter and protecting quantum coherence in complex systems. Polyatomic molecules have long served as a platform for probing ergodicity breaking in vibrational energy transport. Here, we report the observation of rotational ergodicity breaking in an unprecedentedly large molecule,12C60, determined from its icosahedral rovibrational fine structure. The ergodicity breaking occurs well below the vibrational ergodicity threshold and exhibits multiple transitions between ergodic and nonergodic regimes with increasing angular momentum. These peculiar dynamics result from the molecule’s distinctive combination of symmetry, size, and rigidity, highlighting its relevance to emergent phenomena in mesoscopic quantum systems.

     
    more » « less
  7. Context.The methyl cation (CH3+) has recently been discovered in the interstellar medium through the detection of 7 μm (1400 cm−1) features toward the d203-506 protoplanetary disk by the JWST. Line-by-line spectroscopic assignments of these features, however, were unsuccessful due to complex intramolecular perturbations preventing a determination of the excitation and abundance of the species in that source.

    Aims.Comprehensive rovibrational assignments guided by theoretical and experimental laboratory techniques provide insight into the excitation mechanisms and chemistry of CH3+in d203-506.

    Methods.The rovibrational structure of CH3+was studied theoretically by a combination of coupled-cluster electronic structure theory and (quasi-)variational nuclear motion calculations. Two experimental techniques were used to confirm the rovibrational structure of CH3+:(1) infrared leak-out spectroscopy of the methyl cation, and (2) rotationally resolved photoelectron spectroscopy of the methyl radical (CH3). In (1), CH3+ions, produced by the electron impact dissociative ionization of methane, were injected into a 22-pole ion trap where they were probed by the pulses of infrared radiation from the FELIX free electron laser. In (2), neutral CH3, produced by CH3NO2pyrolysis in a molecular beam, was probed by pulsed-field ionization zero-kinetic-energy photoelectron spectroscopy.

    Results.The quantum chemical calculations performed in this study have enabled a comprehensive spectroscopic assignment of thev2+andv4+bands of CH3+detected by the JWST. The resulting spectroscopic constants and derived EinsteinAcoefficients fully reproduce both the infrared and photoelectron spectra and permit the rotational temperature of CH3+(T= 660 ± 80 K) in d203-506 to be derived. A beam-averaged column density of CH3+in this protoplanetary disk is also estimated.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  8. Molecular electronic spectra can be represented in the time domain as auto-correlation functions of the initial vibrational wavepacket. We present a derivation of the harmonic vibrational auto-correlation function that is valid for both real and imaginary harmonic frequencies. The derivation rests on Lie algebra techniques that map otherwise complicated exponential operator arithmetic to simpler matrix formulas. The expressions for the zero- and finite-temperature harmonic auto-correlation functions have been carefully structured both to be free of branch-cut discontinuities and to remain numerically stable with finite-precision arithmetic. Simple extensions correct the harmonic Franck–Condon approximation for the lowest-order anharmonic and Herzberg–Teller effects. Quantitative simulations are shown for several examples, including the electronic absorption spectra of F2, HOCl, CH2NH, and NO2.

     
    more » « less