Quantum state-resolved spectroscopy was recently achieved for C60 molecules when cooled by buffer gas collisions and probed with a midinfrared frequency comb. This rovibrational quantum state resolution for the largest molecule on record is facilitated by the remarkable symmetry and rigidity of C60, which also present new opportunities and challenges to explore energy transfer between quantum states in this many-atom system. Here we combine state-specific optical pumping, buffer gas collisions, and ultrasensitive intracavity nonlinear spectroscopy to initiate and probe the rotation-vibration energy transfer and relaxation. This approach provides the first detailed characterization of C60 collisional energy transfer for a variety of collision partners, and determines the rotational and vibrational inelastic collision cross sections. These results compare well with our theoretical modeling of the collisions, and establish a route towards quantum state control of a new class of unprecedentedly large molecules.
more »
« less
Incorporating reduced axis system embedding into ab initio tunnelling-rotation Hamiltonians with curvilinear vibrational Møller–Plesset perturbation theory
Large-amplitude vibrational motion influences the rovibrational structure of molecules that tunnel between multiple wells. Reaction path (RP) Hamiltonians, and curvilinear coordinates more gen- erally, are useful for modelling pure vibrational motion in these systems and provide a practical framework for calculating accurate ab initio anharmonic vibrational energies and tunnelling split- tings with perturbation theory. These computational tools also offer the means to address rotation- vibration coupling associated with large-amplitude motion in rotating molecules. In this paper, we incorporate the reduced axis system (RAS) frameembeddingwithRPHamiltoniansandsecond-order vibrational Møller-Plesset perturbation theory (VMP2). Because the RP-RAS Hamiltonian eliminates rotation-vibration momentumcoupling everywhere along a one-dimensional reaction path, it is well suited for rovibrational VMP2 methods, the convergence of which relies critically on approximate vibration-vibration and vibration-rotation separability. The accuracy of this combined RP-RAS-VMP2 scheme is demonstrated by comparisons with numerically exact variational calculations and VMP2 parameters based on traditional Eckart embeddings for reduced-dimension models of torsional tunnelling in hydrogenperoxideandinversion tunnelling in cyclopropyl radical. Thefavourablecom- putational scaling ofVMP2makes it a promising strategy for calculating accurate tunnelling-rotation parameters for medium-sized and larger molecules in full dimensionality.
more »
« less
- Award ID(s):
- 2110489
- PAR ID:
- 10528750
- Publisher / Repository:
- Taylor & Francis
- Date Published:
- Journal Name:
- Molecular Physics
- Volume:
- 2024
- ISSN:
- 0026-8976
- Page Range / eLocation ID:
- e2304098
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context.Accurate42Ti(p,γ)43V reaction rates are crucial for understanding the nucleosynthesis path of the rapid capture process (rpprocess) that occurs in X-ray bursts. Aims.We aim to improve the thermonuclear rates of42Ti(p,γ)43V based on more complete resonance information and a more accurate direct component, together with the recently released nuclear masses data. We also explore the impact of the newly obtained rates on therpprocess. Methods.We reevaluated the reaction rate of42Ti(p,γ)43V by the sum of the isolated resonance contribution instead of the Hauser-Feshbach statistical model. We used a Monte Carlo method to derive the associated uncertainties of new rates. The nucleosynthesis simulations were performed via the NuGrid post-processing code ppn. Results.The new rates differ from previous estimations due to the use of a series of updated resonance parameters and a direct S factor. Compared with the previous results from the Hauser-Feshbach statistical model, which assumes compound nucleus43V with a sufficiently high-level density in the energy region of astrophysical interest, large differences exist over the entire temperature region ofrp-process interest, up to two orders of magnitude. We consistently calculated the photodisintegration rate using our new nuclear masses via the detailed balance principle, and found the discrepancies among the different reverse rates are much larger than those for the forward rate, up to ten orders of magnitude at the temperature of 108K. Using a trajectory with a peak temperature of 1.95×109K, we performed therp-process nucleosynthesis simulations to investigate the impact of the new rates. Our calculations show that the adoption of the new forward and reverse rates result in abundance variations for Sc and Ca of 128% and 49%, respectively, compared to the variations for the statistical model rates. On the other hand, the overall abundance pattern is not significantly affected. The results of using new rates also confirm that therp-process path does not bypass the isotope43V. Conclusions.Our study found that the Hauser-Feshbach statistical model is inappropriate to the reaction rate evaluation for42Ti(p,γ)43V. The adoption of the new rates confirms that the reaction path of42Ti(p,γ)43V(p,γ)44Cr(β+)44V is a key branch of therpprocess in X-ray bursts.more » « less
-
Conspectus: The role of quantum mechanical coherences or coherent superposition states in excited state processes has received considerable attention in the last two decades largely due to advancements in ultrafast laser spectroscopy. These coherence effects hold promise for enhancing the efficiency and robustness of functionally relevant processes, even when confronted with strong energy disorder and environmental fluctuations. Understanding coherence deeply drives us to unravel mechanisms and dynamics controlled by order and synchronization at a quantum mechanical level, envisioning optical control of coherence to enhance functions or create new ones in molecular and material systems. In this frontier, the interplay between electronic and vibrational dynamics, specifically the influence of vibrations in directing electronic dynamics, has emerged as the leading principle. Here, two energetically disparate quantum degrees of freedom work in-sync to dictate the trajectory of an excited state reaction. Moreover, with the vibrational degree being directly related to the structural composition of molecular or material systems, new molecular designs could be inspired by tailoring certain structural elements. In the realm of chemical kinetics, our understanding of the dynamics of chemical transformations is underpinned by fundamental theories such as transition state theory, activated rate theory, and Marcus theory. These theories elucidate reaction rates by considering the energy barriers that must be overcome for reactants to transform into products. Those barriers are surmounted by the stochastic nature of energy gap fluctuations within reacting systems, emphasizing that the reaction coordinate—the pathway from reactants to products—is not rigidly defined by a specific vibrational motion but encompasses a diverse array of molecular motions. While less is known about the involvement of specific intramolecular vibrational modes, their significance in certain cases cannot be overlooked. In this Account, we summarize key experimental findings that offer deeper insights into the complex electronic-vibrational trajectories encompassing excited states afforded from state-of-the-art ultrafast laser spectroscopy in three exemplary processes: photo-induced electron transfer, singlet-triplet intersystem crossing, and intramolecular vibrational energy flow in molecular systems. We delve into rapid decoherence—loss of phase and amplitude correlations—of vibrational coherences along promoter vibrations during a sub-picosecond intersystem crossing dynamics in a series of binuclear platinum complexes. This rapid decoherence illustrates the vibration-driven reactive pathways from Franck-Condon state to the curve crossing region. We also explore the generation of new vibrational coherences induced by impulsive reaction dynamics—rather than by the laser pulse—in these systems, which sheds light on specific energy dissipation pathways and thereby on the progression of the reaction trajectory in the vicinity of the curve crossing on the product side. Another property of vibrational coherences, amplitude, reveals how energy can flow from one vibration to another in the electronic excited state of a terpyridine-molybdenum complex hosting a nonreactive dinitrogen substrate. A slight change in vibrational energy triggers a quasi-resonant interaction, leading to constructive wavepacket interference and ultimately intramolecular vibrational redistribution from a Franck-Condon active terpyridine vibration to dinitrogen stretching vibration, energizing the dinitrogen bond.more » « less
-
In this work, we present the spectral analysis of 1 H- and 2 H-1,2,3-triazole vibrationally excited states alongside provisional and practical computational predictions of the excited-state quartic centrifugal distortion constants. The low-energy fundamental vibrational states of 1 H-1,2,3-triazole and five of its deuteriated isotopologues ([1- 2 H]-, [4- 2 H]-, [5- 2 H]-, [4,5- 2 H]-, and [1,4,5- 2 H]-1 H-1,2,3-triazole), as well as those of 2 H-1,2,3-triazole and five of its deuteriated isotopologues ([2- 2 H]-, [4- 2 H]-, [2,4- 2 H]-, [4,5- 2 H]-, and [2,4,5- 2 H]-2 H-1,2,3-triazole), are studied using millimeter-wave spectroscopy in the 130–375 GHz frequency region. The normal and [2- 2 H]-isotopologues of 2 H-1,2,3-triazole are also analyzed using high-resolution infrared spectroscopy, determining the precise energies of three of their low-energy fundamental states. The resulting spectroscopic constants for each of the vibrationally excited states are reported for the first time. Coupled-cluster vibration–rotation interaction constants are compared with each of their experimentally determined values, often showing agreement within 500 kHz. Newly available coupled-cluster predictions of the excited-state quartic centrifugal distortion constants based on fourth-order vibrational perturbation theory are benchmarked using a large number of the 1,2,3-triazole tautomer isotopologues and vibrationally excited states studied.more » « less
-
The vibrational spectra of condensed and gas-phase systems are influenced by thequantum-mechanical behavior of light nuclei. Full-dimensional simulations of approximate quantum dynamics are possible thanks to the imaginary time path-integral (PI) formulation of quantum statistical mechanics, albeit at a high computational cost which increases sharply with decreasing temperature. By leveraging advances in machine-learned coarse-graining, we develop a PI method with the reduced computational cost of a classical simulation. We also propose a simple temperature elevation scheme to significantly attenuate the artifacts of standard PI approaches as well as eliminate the unfavorable temperature scaling of the computational cost. We illustrate the approach, by calculating vibrational spectra using standard models of water molecules and bulk water, demonstrating significant computational savings and dramatically improved accuracy compared to more expensive reference approaches. Our simple, efficient, and accurate method has prospects for routine calculations of vibrational spectra for a wide range of molecular systems - with an explicit treatment of the quantum nature of nuclei.more » « less
An official website of the United States government

