skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chao, Wei-Lun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 12, 2025
  2. Free, publicly-accessible full text available December 12, 2025
  3. Free, publicly-accessible full text available December 12, 2025
  4. Free, publicly-accessible full text available October 30, 2025
  5. Free, publicly-accessible full text available June 16, 2025
  6. We present a novel usage of Transformers to make image classification interpretable. Unlike mainstream classifiers that wait until the last fully connected layer to incorporate class information to make predictions, we investigate a proactive approach, asking each class to search for itself in an image. We realize this idea via a Transformer encoder-decoder inspired by DEtection TRansformer (DETR). We learn “class-specific” queries (one for each class) as input to the decoder, enabling each class to localize its patterns in an image via cross-attention. We name our approach INterpretable TRansformer (INTR), which is fairly easy to implement and exhibits several compelling properties. We show that INTR intrinsically encourages each class to attend distinctively; the cross-attention weights thus provide a faithful interpretation of the prediction. Interestingly, via “multi-head” cross-attention, INTR could identify different “attributes” of a class, making it particularly suitable for fine-grained classification and analysis, which we demonstrate on eight datasets. Our code and pre-trained models are publicly accessible at the Imageomics Institute GitHub site: https://github.com/Imageomics/INTR. 
    more » « less