skip to main content

Search for: All records

Creators/Authors contains: "Chao, Wei-Lun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Intermediate features of a pre-trained model have been shown informative for making accurate predictions on downstream tasks, even if the model backbone is kept frozen. The key challenge is how to utilize these intermediate fea- tures given their gigantic amount. We propose visual query tuning (VQT), a simple yet effective approach to aggregate intermediate features of Vision Transformers. Through in- troducing a handful of learnable “query” tokens to each layer, VQT leverages the inner workings of Transformers to “summarize” rich intermediate features of each layer, which can then be used to train the prediction heads of downstream tasks. As VQT keeps the intermediate features intact and only learns to combine them, it enjoys memory efficiency in training, compared to many other parameter- efficient fine-tuning approaches that learn to adapt features and need back-propagation through the entire backbone. This also suggests the complementary role between VQT and those approaches in transfer learning. Empirically, VQT consistently surpasses the state-of-the-art approach that utilizes intermediate features for transfer learning and outperforms full fine-tuning in many cases. Compared to parameter-efficient approaches that adapt features, VQT achieves much higher accuracy under memory constraints. Most importantly, VQT is compatible with these approaches to attain even higher accuracy, making it a simple add- on to further boost transfer learning. Code is available at . 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. The uncertainty quantification of prediction mod- els (e.g., neural networks) is crucial for their adoption in many robotics applications. This is arguably as important as making accurate predictions, especially for safety-critical applications such as self-driving cars. This paper proposes our approach to uncertainty quantification in the context of visual localization for autonomous driving, where we predict locations from images. Our proposed framework estimates probabilistic uncertainty by creating a sensor error model that maps an inter- nal output of the prediction model to the uncertainty. The sensor error model is created using multiple image databases of visual localization, each with ground-truth location. We demonstrate the accuracy of our uncertainty prediction framework using the Ithaca365 dataset, which includes variations in lighting, weather (sunny, snowy, night), and alignment errors between databases. We analyze both the predicted uncertainty and its incorporation into a Kalman-based localization filter. Our results show that prediction error variations increase with poor weather and lighting condition, leading to greater uncertainty and outliers, which can be predicted by our proposed uncertainty model. Additionally, our probabilistic error model enables the filter to remove ad hoc sensor gating, as the uncertainty automatically adjusts the model to the input data. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Fractals are geometric shapes that can display complex and self-similar patterns found in nature (e.g., clouds and plants). Recent works in visual recognition have leveraged this property to create random fractal images for model pre-training. In this paper, we study the inverse problem --- given a target image (not necessarily a fractal), we aim to generate a fractal image that looks like it. We propose a novel approach that learns the parameters underlying a fractal image via gradient descent. We show that our approach can find fractal parameters of high visual quality and be compatible with different loss functions, opening up several potentials, e.g., learning fractals for downstream tasks, scientific understanding, etc. 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  4. Free, publicly-accessible full text available June 1, 2024
  5. Free, publicly-accessible full text available May 29, 2024
  6. A self-driving car must be able to reliably handle adverse weather conditions (e.g., snowy) to operate safely. In this paper, we investigate the idea of turning sensor inputs (i.e., images) captured in an adverse condition into a benign one (i.e., sunny), upon which the downstream tasks (e.g., semantic segmentation) can attain high accuracy. Prior work primarily formulates this as an unpaired image-to-image translation problem due to the lack of paired images captured under the exact same camera poses and semantic layouts. While perfectly- aligned images are not available, one can easily obtain coarsely- paired images. For instance, many people drive the same routes daily in both good and adverse weather; thus, images captured at close-by GPS locations can form a pair. Though data from repeated traversals are unlikely to capture the same foreground objects, we posit that they provide rich contextual information to supervise the image translation model. To this end, we propose a novel training objective leveraging coarsely- aligned image pairs. We show that our coarsely-aligned training scheme leads to a better image translation quality and improved downstream tasks, such as semantic segmentation, monocular depth estimation, and visual localization. 
    more » « less
    Free, publicly-accessible full text available May 29, 2024
  7. Free, publicly-accessible full text available May 29, 2024
  8. Abstract

    Task‐incremental learning (Task‐IL) aims to enable an intelligent agent to continuously accumulate knowledge from new learning tasks without catastrophically forgetting what it has learned in the past. It has drawn increasing attention in recent years, with many algorithms being proposed to mitigate neural network forgetting. However, none of the existing strategies is able to completely eliminate the issues. Moreover, explaining and fully understanding what knowledge and how it is being forgotten during the incremental learning process still remains under‐explored. In this paper, we propose KnowledgeDrift, a visual analytics framework, to interpret the network forgetting with three objectives: (1) to identify when the network fails to memorize the past knowledge, (2) to visualize what information has been forgotten, and (3) to diagnose how knowledge attained in the new model interferes with the one learned in the past. Our analytical framework first identifies the occurrence of forgetting by tracking the task performance under the incremental learning process and then provides in‐depth inspections of drifted information via various levels of data granularity. KnowledgeDrift allows analysts and model developers to enhance their understanding of network forgetting and compare the performance of different incremental learning algorithms. Three case studies are conducted in the paper to further provide insights and guidance for users to effectively diagnose catastrophic forgetting over time.

    more » « less