- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chapina, Rosaura J. (2)
-
Hanson, Paul C. (2)
-
Weathers, Kathleen C. (2)
-
Anderson, Alyssa (1)
-
Bah, Abdou (1)
-
Bah, Abdou R. (1)
-
Boehrer, Bertram (1)
-
Borre, Lisa (1)
-
Chapina, Rosaura J (1)
-
Doyle, Chris (1)
-
Dugan, Hilary A. (1)
-
Farruggia, Mary Jade (1)
-
Favot, Elizbaeth J. (1)
-
Flaim, Giovanna (1)
-
Forsberg, Philip (1)
-
Ghosh, Rahul (1)
-
Ibelings, Bas W. (1)
-
Isles, Peter (1)
-
Khandelwal, Ankush (1)
-
Korver, Maartje C. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The mysid Neomysis americana (Smith, 1873) is native to shallow shelf waters and estuaries of the western Atlantic coast of North America. Despite the important role mysids such as N. americana play in estuarine ecosystems as both consumers and as prey for higher trophic levels, there is limited information on how metabolism influences their spatial ecology and habitat requirements. In tributaries of Chesapeake Bay, MD, USA, previous research has shown that summer water temperatures can approach the lethal upper tolerance limit for N. americana. We measured the per capita metabolic rate (µgO2 min–1) of N. americana from the upper Patuxent River near Benedict, MD, a tributary of Chesapeake Bay in the laboratory to evaluate the metabolic response to salinity and temperature conditions that mysids experience in natural habitats. Sex-specific and diel patterns in metabolic rate were quantified. Metabolic rates did not differ between night and day and there was no significant difference in metabolic rate between males and females, exclusive of gravid females. Metabolic rates were lowest in salinity treatments of 2 and 8 at 29 °C, and highest in the salinity 2 treatment at 22 °C. Only temperature had a statistically significant, albeit unexpected, effect. This study shows that the metabolic response of N. americana to temperature and salinity conditions is complex and plastic, and that metabolic rates can vary 3–4 fold within realistic summer temperature and salinity conditions. As environmental conditions continue to change, understanding metabolic response of mysids to realistic salinity and temperature conditions is necessary for understanding their distributions in temperate estuaries.more » « less
-
Wander, Heather L.; Farruggia, Mary Jade; La Fuente, Sofia; Korver, Maartje C.; Chapina, Rosaura J.; Robinson, Jenna; Bah, Abdou; Munthali, Elias; Ghosh, Rahul; Stachelek, Jemma; et al (, Environmental Science & Technology)
-
Meyer, Michael F.; Ladwig, Robert; Dugan, Hilary A.; Anderson, Alyssa; Bah, Abdou R.; Boehrer, Bertram; Borre, Lisa; Chapina, Rosaura J.; Doyle, Chris; Favot, Elizbaeth J.; et al (, Limnology and Oceanography Bulletin)Abstract For many, 2020 was a year of abrupt professional and personal change. For the aquatic sciences community, many were adapting to virtual formats for conducting and sharing science, while simultaneously learning to live in a socially distanced world. Understandably, the aquatic sciences community postponed or canceled most in‐person scientific meetings. Still, many scientific communities either transitioned annual meetings to a virtual format or inaugurated new virtual meetings. Fortunately, increased use of video conferencing platforms, networking and communication applications, and a general comfort with conducting science virtually helped bring the in‐person meeting experience to scientists worldwide. Yet, the transition to conducting science virtually revealed new barriers to participation whereas others were lowered. The combined lessons learned from organizing a meeting constitute a necessary knowledge base that will prove useful, as virtual conferences are likely to continue in some form. To concentrate and synthesize these experiences, we showcase how six scientific societies and communities planned, organized, and conducted virtual meetings in 2020. With this consolidated information in hand, we look forward to a future, where scientific meetings embrace a virtual component, so to as help make science more inclusive and global.more » « less
An official website of the United States government
