skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chapman, Melissa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. From out-competing grandmasters in chess to informing high-stakes healthcare decisions, emerging methods from artificial intelligence are increasingly capable of making complex and strategic decisions in diverse, high-dimensional and uncertain situations. But can these methods help us devise robust strategies for managing environmental systems under great uncertainty? Here we explore how reinforcement learning (RL), a subfield of artificial intelligence, approaches decision problems through a lens similar to adaptive environmental management: learning through experience to gradually improve decisions with updated knowledge. We review where RL holds promise for improving evidence-informed adaptive management decisions even when classical optimization methods are intractable and discuss technical and social issues that arise when applying RL to adaptive management problems in the environmental domain. Our synthesis suggests that environmental management and computer science can learn from one another about the practices, promises and perils of experience-based decision-making. This article is part of the theme issue ‘Detecting and attributing the causes of biodiversity change: needs, gaps and solutions’. 
    more » « less
  2. Abstract The general public and scientific community alike are abuzz over the release of ChatGPT and GPT-4. Among many concerns being raised about the emergence and widespread use of tools based on large language models (LLMs) is the potential for them to propagate biases and inequities. We hope to open a conversation within the environmental data science community to encourage the circumspect and responsible use of LLMs. Here, we pose a series of questions aimed at fostering discussion and initiating a larger dialogue. To improve literacy on these tools, we provide background information on the LLMs that underpin tools like ChatGPT. We identify key areas in research and teaching in environmental data science where these tools may be applied, and discuss limitations to their use and points of concern. We also discuss ethical considerations surrounding the use of LLMs to ensure that as environmental data scientists, researchers, and instructors, we can make well-considered and informed choices about engagement with these tools. Our goal is to spark forward-looking discussion and research on how as a community we can responsibly integrate generative AI technologies into our work. 
    more » « less
  3. Data that influence policy and major investment decisions risk entrenching social and political inequities 
    more » « less
  4. Machine learning (ML) methods already permeate environmental decision-making, from processing high-dimensional data on earth systems to monitoring compliance with environmental regulations. Of the ML techniques available to address pressing environmental problems (e.g., climate change, biodiversity loss), Reinforcement Learning (RL) may both hold the greatest promise and present the most pressing perils. This paper explores how RL-driven policy refracts existing power relations in the environmental domain while also creating unique challenges to ensuring equitable and accountable environmental decision processes. We leverage examples from RL applications to climate change mitigation and fisheries management to explore how RL technologies shift the distribution of power between resource users, governing bodies, and private industry. 
    more » « less
  5. Abstract A core goal of the National Ecological Observatory Network (NEON) is to measure changes in biodiversity across the 30‐yr horizon of the network. In contrast to NEON’s extensive use of automated instruments to collect environmental data, NEON’s biodiversity surveys are almost entirely conducted using traditional human‐centric field methods. We believe that the combination of instrumentation for remote data collection and machine learning models to process such data represents an important opportunity for NEON to expand the scope, scale, and usability of its biodiversity data collection while potentially reducing long‐term costs. In this manuscript, we first review the current status of instrument‐based biodiversity surveys within the NEON project and previous research at the intersection of biodiversity, instrumentation, and machine learning at NEON sites. We then survey methods that have been developed at other locations but could potentially be employed at NEON sites in future. Finally, we expand on these ideas in five case studies that we believe suggest particularly fruitful future paths for automated biodiversity measurement at NEON sites: acoustic recorders for sound‐producing taxa, camera traps for medium and large mammals, hydroacoustic and remote imagery for aquatic diversity, expanded remote and ground‐based measurements for plant biodiversity, and laboratory‐based imaging for physical specimens and samples in the NEON biorepository. Through its data science‐literate staff and user community, NEON has a unique role to play in supporting the growth of such automated biodiversity survey methods, as well as demonstrating their ability to help answer key ecological questions that cannot be answered at the more limited spatiotemporal scales of human‐driven surveys. 
    more » « less