skip to main content

Search for: All records

Creators/Authors contains: "Charles Dickens, Connor Pryor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we examine online collective inference, the problem of maintaining and performing inference over a sequence of evolving graphical models. We utilize templated graphical models (TGM), a general class of graphical models expressed via templates and instantiated with data. A key challenge is minimizing the cost of instantiating the updated model. To address this, we define a class of exact and approximate context-aware methods for updating an existing TGM. These methods avoid a full re-instantiation by using the context of the updates to only add relevant components to the graphical model. Further, we provide stability bounds for the general online inference problem and regret bounds for a proposed approximation. Finally, we implement our approach in probabilistic soft logic, and test it on several online collective inference tasks. Through these experiments we verify the bounds on regret and stability, and show that our approximate online approach consistently runs two to five times faster than the offline alternative while, surprisingly, maintaining the quality of the predictions.