Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides continuous global maps of Birkeland currents, using magnetic field perturbations (dB) obtained by calibrating and detrending data from engineering magnetometers on the 66 polar‐orbiting Iridium satellites in the communications constellation. Here, we provide an assessment of AMPERE dBaccuracy, as compared with magnetic field observations from the Swarm satellite mission. The CHAOS v8.1 model (Finlay et al., 2020,https://doi.org/10.1186/s40623‐020‐01252‐9) was used to remove the main field and other non‐ionospheric contributions from both data sets. In a nearest‐neighbor comparison covering August 2022, AMPERE's calibrated and detrended dBdata from the Iridium NEXT satellites are found to have root‐mean‐square deviations of 31 and 33 nT (for dBθand dBφ, respectively) as compared with data from Swarm, while the biases are −7 and −2 nT. For the same interval, AMPERE's fitted maps have root‐mean‐square errors of <40 nT, rising to 109–185 nT in active conditions (defined as Swarm dB > 250 nT). However, there is evidence that small scale (<400‐km along Swarm track direction) dBstructures are not fully resolved. Overall, we find that the AMPERE dBdata and fitted products are unbiased and are typically in excellent agreement with the Swarm data.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Abstract New, open access tools have been developed to validate ionospheric models in terms of technologically relevant metrics. These are ionospheric errors on GPS 3D position, HF ham radio communications, and peak F‐region density. To demonstrate these tools, we have used output from Sami is Another Model of the Ionosphere (SAMI3) driven by high‐latitude electric potentials derived from Active Magnetosphere and Planetary Electrodynamics Response Experiment, covering the first available month of operation using Iridium‐NEXT data (March 2019). Output of this model is now available for visualization and download viahttps://sami3.jhuapl.edu. The GPS test indicates SAMI3 reduces ionospheric errors on 3D position solutions from 1.9 m with no model to 1.6 m on average (maximum error: 14.2 m without correction, 13.9 m with correction). SAMI3 predicts 55.5% of reported amateur radio links between 2–30 MHz and 500–2,000 km. Autoscaled and then machine learning “cleaned” Digisonde NmF2 data indicate a 1.0 × 1011 el. m3median positive bias in SAMI3 (equivalent to a 27% overestimation). The positive NmF2 bias is largest during the daytime, which may explain the relatively good performance in predicting HF links then. The underlying data sources and software used here are publicly available, so that interested groups may apply these tests to other models and time intervals.more » « less
-
Abstract A new technique has been developed to determine the high‐latitude electric potential from observed field‐aligned currents (FACs) and modeled ionospheric conductances. FACs are observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), while the conductances are modeled by Sami3 is Also a Model of the Ionosphere (SAMI3). This is a development of the Magnetosphere‐Ionosphere Coupling approach first demonstrated by Merkin and Lyon (2010),https://doi.org/10.1029/2010ja015461. An advantage of using SAMI3 is that the model can be used to predict total electron content (TEC), based on the AMPERE‐derived potential solutions. 23 May 2014 is chosen as a case study to assess the new technique for a moderately disturbed case (min Dst: −36 nT, max AE: 909 nT) with good GPS data coverage. The new AMPERE/SAMI3 solutions are compared against independent GPS‐based TEC observations from the Multi‐Instrument Data Analysis Software (MIDAS) by Mitchell and Spencer (2003), and against Defense Meteorological Satellite Program (DMSP) ion drift data. The comparison shows excellent agreement between the location of the tongue of ionization in the MIDAS GPS data and the AMPERE/SAMI3 potential pattern, and good overall agreement with DMSP drifts. SAMI3 predictions of high‐latitude TEC are much improved when using the AMPERE‐derived potential as compared to Weimer's (2005),https://doi.org/10.1029/2005ja011270model. The two potential models have substantial differences, with Weimer producing an average 77 kV cross‐cap potential versus 60 kV for the AMPERE‐derived potential. The results indicate that the 66‐satellite Iridium constellation provides sufficient resolution of FACs to estimate large‐scale ionospheric convection as it impacts TEC.more » « less
-
Abstract The sub‐auroral polarization stream (SAPS) is a region of westward high velocity plasma convection equatorward of the auroral oval that plays an important role in mid‐latitude space weather dynamics. In this study, we present observations of SAPS flows extending across the North American sector observed during the recovery phase of a minor geomagnetic storm. A resurgence in substorm activity drove a new set of field‐aligned currents (FACs) into the ionosphere, initiating the SAPS. An upward FAC system is the most prominent feature spreading across most SAPS local times, except near dusk, where a downward current system is pronounced. The location of SAPS flows remained relatively constant, firmly inside the trough, independent of the variability in the location and intensity of the FACs. The SAPS flows were sustained even after the FACs weakened and retreated polewards with a decline in geomagnetic activity. The observations indicate that the mid‐latitude trough plays a crucial role in determining the location of the SAPS and that SAPS flows can be sustained even after the magnetospheric driver has weakened.more » « less
An official website of the United States government
