Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SUMMARY Single-cell analysis has transformed our understanding of cellular diversity, offering insights into complex biological systems. Yet, manual data processing in single-cell studies poses challenges, including inefficiency, human error, and limited scalability. To address these issues, we propose the automated workflowcellSight, which integrates high-throughput sequencing in a user-friendly platform. By automating tasks like cell type clustering, feature extraction, and data normalization,cellSightreduces researcher workload, promoting focus on data interpretation and hypothesis generation. Its standardized analysis pipelines and quality control metrics enhance reproducibility, enabling collaboration across studies. Moreover,cellSight’s adaptability supports integration with emerging technologies, keeping pace with advancements in single-cell genomics.cellSightaccelerates discoveries in single-cell biology, driving impactful insights and clinical translation. It is available with documentation and tutorials athttps://github.com/omicsEye/cellSight.more » « lessFree, publicly-accessible full text available May 22, 2026
-
Abstract Multi-omics approaches have been successfully applied to investigate pregnancy and health outcomes at a molecular and genetic level in several studies. As omics technologies advance, research areas are open to study further. Here we discuss overall trends and examples of successfully using omics technologies and techniques (e.g., genomics, proteomics, metabolomics, and metagenomics) to investigate the molecular epidemiology of pregnancy. In addition, we outline omics applications and study characteristics of pregnancy for understanding fundamental biology, causal health, and physiological relationships, risk and prediction modeling, diagnostics, and correlations.more » « less
-
Abstract Proteins are direct products of the genome and metabolites are functional products of interactions between the host and other factors such as environment, disease state, clinical information, etc. Omics data, including proteins and metabolites, are useful in characterizing biological processes underlying COVID-19 along with patient data and clinical information, yet few methods are available to effectively analyze such diverse and unstructured data. Using an integrated approach that combines proteomics and metabolomics data, we investigated the changes in metabolites and proteins in relation to patient characteristics (e.g., age, gender, and health outcome) and clinical information (e.g., metabolic panel and complete blood count test results). We found significant enrichment of biological indicators of lung, liver, and gastrointestinal dysfunction associated with disease severity using publicly available metabolite and protein profiles. Our analyses specifically identified enriched proteins that play a critical role in responses to injury or infection within these anatomical sites, but may contribute to excessive systemic inflammation within the context of COVID-19. Furthermore, we have used this information in conjunction with machine learning algorithms to predict the health status of patients presenting symptoms of COVID-19. This work provides a roadmap for understanding the biochemical pathways and molecular mechanisms that drive disease severity, progression, and treatment of COVID-19.more » « less
An official website of the United States government
