Abstract BackgroundComputational cell type deconvolution enables the estimation of cell type abundance from bulk tissues and is important for understanding tissue microenviroment, especially in tumor tissues. With rapid development of deconvolution methods, many benchmarking studies have been published aiming for a comprehensive evaluation for these methods. Benchmarking studies rely on cell-type resolved single-cell RNA-seq data to create simulated pseudobulk datasets by adding individual cells-types in controlled proportions. ResultsIn our work, we show that the standard application of this approach, which uses randomly selected single cells, regardless of the intrinsic difference between them, generates synthetic bulk expression values that lack appropriate biological variance. We demonstrate why and how the current bulk simulation pipeline with random cells is unrealistic and propose a heterogeneous simulation strategy as a solution. The heterogeneously simulated bulk samples match up with the variance observed in real bulk datasets and therefore provide concrete benefits for benchmarking in several ways. We demonstrate that conceptual classes of deconvolution methods differ dramatically in their robustness to heterogeneity with reference-free methods performing particularly poorly. For regression-based methods, the heterogeneous simulation provides an explicit framework to disentangle the contributions of reference construction and regression methods to performance. Finally, we perform an extensive benchmark of diverse methods across eight different datasets and find BayesPrism and a hybrid MuSiC/CIBERSORTx approach to be the top performers. ConclusionsOur heterogeneous bulk simulation method and the entire benchmarking framework is implemented in a user friendly packagehttps://github.com/humengying0907/deconvBenchmarkingandhttps://doi.org/10.5281/zenodo.8206516, enabling further developments in deconvolution methods.
more »
« less
This content will become publicly available on May 22, 2026
cellSight : Characterizing dynamics of cells using single-cell RNA-sequencing
SUMMARY Single-cell analysis has transformed our understanding of cellular diversity, offering insights into complex biological systems. Yet, manual data processing in single-cell studies poses challenges, including inefficiency, human error, and limited scalability. To address these issues, we propose the automated workflowcellSight, which integrates high-throughput sequencing in a user-friendly platform. By automating tasks like cell type clustering, feature extraction, and data normalization,cellSightreduces researcher workload, promoting focus on data interpretation and hypothesis generation. Its standardized analysis pipelines and quality control metrics enhance reproducibility, enabling collaboration across studies. Moreover,cellSight’s adaptability supports integration with emerging technologies, keeping pace with advancements in single-cell genomics.cellSightaccelerates discoveries in single-cell biology, driving impactful insights and clinical translation. It is available with documentation and tutorials athttps://github.com/omicsEye/cellSight.
more »
« less
- Award ID(s):
- 2109688
- PAR ID:
- 10627429
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Single-cell technologies can measure the expression of thousands of molecular features in individual cells undergoing dynamic biological processes. While examining cells along a computationally-ordered pseudotime trajectory can reveal how changes in gene or protein expression impact cell fate, identifying such dynamic features is challenging due to the inherent noise in single-cell data. Here, we present DELVE, an unsupervised feature selection method for identifying a representative subset of molecular features which robustly recapitulate cellular trajectories. In contrast to previous work, DELVE uses a bottom-up approach to mitigate the effects of confounding sources of variation, and instead models cell states from dynamic gene or protein modules based on core regulatory complexes. Using simulations, single-cell RNA sequencing, and iterative immunofluorescence imaging data in the context of cell cycle and cellular differentiation, we demonstrate how DELVE selects features that better define cell-types and cell-type transitions. DELVE is available as an open-source python package:https://github.com/jranek/delve.more » « less
-
Abstract Copy number aberrations (CNAs) are ubiquitous in many types of cancer. Inferring CNAs from cancer genomic data could help shed light on the initiation, progression, and potential treatment of cancer. While such data have traditionally been available via “bulk sequencing,” the more recently introduced techniques for single-cell DNA sequencing (scDNAseq) provide the type of data that makes CNA inference possible at the single-cell resolution. We introduce a new birth-death evolutionary model of CNAs and a Bayesian method, NestedBD, for the inference of evolutionary trees (topologies and branch lengths with relative mutation rates) from single-cell data. We evaluated NestedBD’s performance using simulated data sets, benchmarking its accuracy against traditional phylogenetic tools as well as state-of-the-art methods. The results show that NestedBD infers more accurate topologies and branch lengths, and that the birth-death model can improve the accuracy of copy number estimation. And when applied to biological data sets, NestedBD infers plausible evolutionary histories of two colorectal cancer samples. NestedBD is available athttps://github.com/Androstane/NestedBD.more » « less
-
Abstract BackgroundDirect-sequencing technologies, such as Oxford Nanopore’s, are delivering long RNA reads with great efficacy and convenience. These technologies afford an ability to detect post-transcriptional modifications at a single-molecule resolution, promising new insights into the functional roles of RNA. However, realizing this potential requires new tools to analyze and explore this type of data. ResultHere, we present Sequoia, a visual analytics tool that allows users to interactively explore nanopore sequences. Sequoia combines a Python-based backend with a multi-view visualization interface, enabling users to import raw nanopore sequencing data in a Fast5 format, cluster sequences based on electric-current similarities, and drill-down onto signals to identify properties of interest. We demonstrate the application of Sequoia by generating and analyzing ~ 500k reads from direct RNA sequencing data of human HeLa cell line. We focus on comparing signal features from m6A and m5C RNA modifications as the first step towards building automated classifiers. We show how, through iterative visual exploration and tuning of dimensionality reduction parameters, we can separate modified RNA sequences from their unmodified counterparts. We also document new, qualitative signal signatures that characterize these modifications from otherwise normal RNA bases, which we were able to discover from the visualization. ConclusionsSequoia’s interactive features complement existing computational approaches in nanopore-based RNA workflows. The insights gleaned through visual analysis should help users in developing rationales, hypotheses, and insights into the dynamic nature of RNA. Sequoia is available athttps://github.com/dnonatar/Sequoia.more » « less
-
Abstract Precise and accurate predictions of the halo mass function for cluster mass scales inwνCDM cosmologies are crucial for extracting robust and unbiased cosmological information from upcoming galaxy cluster surveys.Here, we present a halo mass function emulator for cluster mass scales (≳ 1013M⊙/h) up to redshiftz= 2 with comprehensive support for the parameter space ofwνCDM cosmologies allowed by current data.Based on theAemulusνsuite of simulations, the emulator marks a significant improvement in the precision of halo mass function predictions by incorporating both massive neutrinos and non-standard dark energy equation of state models.This allows for accurate modeling of the cosmology dependence in large-scale structure and galaxy cluster studies.We show that the emulator, designed using Gaussian Process Regression, has negligible theoretical uncertainties compared to dominant sources of error in future cluster abundance studies.Our emulator is publicly available (https://github.com/DelonShen/aemulusnu_hmf), providing the community with a crucial tool for upcoming cosmological surveys such as LSST and Euclid.more » « less
An official website of the United States government
