skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Che, Yiming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In computer simulation and optimal design, sequential batch sampling offers an appealing way to iteratively stipulate optimal sampling points based upon existing selections and efficiently construct surrogate modeling. Nonetheless, the issue of near duplicates poses tremendous quandary for sequential learning. It refers to the situation that selected critical points cluster together in each sampling batch, which are individually but not collectively informative towards the optimal design. Near duplicates severely diminish the computational efficiency as they barely contribute extra information towards update of the surrogate. To address this issue, we impose a dispersion criterion on concurrent selection of sampling points, which essentially forces a sparse distribution of critical points in each batch, and demonstrate the effectiveness of this approach in adaptive contour estimation. Specifically, we adopt Gaussian process surrogate to emulate the simulator, acquire variance reduction of the critical region from new sampling points as a dispersion criterion, and combine it with the modified expected improvement (EI) function for critical batch selection. The critical region here is the proximity of the contour of interest. This proposed approach is vindicated in numerical examples of a two‐dimensional four‐branch function, a four‐dimensional function with a disjoint contour of interest and a time‐delay dynamic system. 
    more » « less
  2. While significant efforts have been attempted in the design, control, and optimization of complex networks, most existing works assume the network structure is known or readily available. However, the network topology can be radically recast after an adversarial attack and may remain unknown for subsequent analysis. In this work, we propose a novel Bayesian sequential learning approach to reconstruct network connectivity adaptively: A sparse Spike and Slab prior is placed on connectivity for all edges, and the connectivity learned from reconstructed nodes will be used to select the next node and update the prior knowledge. Central to our approach is that most realistic networks are sparse, in that the connectivity degree of each node is much smaller compared to the number of nodes in the network. Sequential selection of the most informative nodes is realized via the between-node expected improvement. We corroborate this sequential Bayesian approach in connectivity recovery for a synthetic ultimatum game network and the IEEE-118 power grid system. Results indicate that only a fraction (∼50%) of the nodes need to be interrogated to reveal the network topology. 
    more » « less
  3. Abstract The recent COVID-19 pandemic reveals the vulnerability of global supply chains: the unforeseen supply crunches and unpredictable variability in customer demands lead to catastrophic disruption to production planning and management, causing wild swings in productivity for most manufacturing systems. Therefore, a smart and resilient manufacturing system (S&RMS) is promised to withstand such unexpected perturbations and adjust promptly to mitigate their impacts on the system’s stability. However, modeling the system’s resilience to the impacts of disruptive events has not been fully addressed. We investigate a generalized polynomial chaos (gPC) expansion-based discrete-event dynamic system (DEDS) model to capture uncertainties and irregularly disruptive events for manufacturing systems. The analytic approach allows a real-time optimization for production planning to mitigate the impacts of intermittent disruptive events (e.g., supply shortages) and enhance the system’s resilience. The case study on a hybrid bearing manufacturing workshop suggests that the proposed approach allows a timely intervention in production planning to significantly reduce the downtime (around one-fifth of the downtime compared to the one without controls) while guaranteeing maximum productivity under the system perturbations and uncertainties. 
    more » « less
  4. Abstract In this study, we carry out robust optimal design for the machining operations, one key process in wafer polishing in chip manufacturing, aiming to avoid the peculiar regenerative chatter and maximize the material removal rate (MRR) considering the inherent material and process uncertainty. More specifically, we characterize the cutting tool dynamics using a delay differential equation (DDE) and enlist the temporal finite element method (TFEM) to derive its approximate solution and stability index given process settings or design variables. To further quantify the inherent uncertainty, replications of TFEM under different realizations of random uncontrollable variables are performed, which however incurs extra computational burden. To eschew the deployment of such a crude Monte Carlo (MC) approach at each design setting, we integrate the stochastic TFEM with a stochastic surrogate model, stochastic kriging, in an active learning framework to sequentially approximate the stability boundary. The numerical result suggests that the nominal stability boundary attained from this method is on par with that from the crude MC, but only demands a fraction of the computational overhead. To further ensure the robustness of process stability, we adopt another surrogate, the Gaussian process, to predict the variance of the stability index at unexplored design points and identify the robust stability boundary per the conditional value at risk (CVaR) criterion. Therefrom, an optimal design in the robust stable region that maximizes the MRR can be identified. 
    more » « less