skip to main content


Title: Characterizations and Optimization for Resilient Manufacturing Systems With Considerations of Process Uncertainties
Abstract The recent COVID-19 pandemic reveals the vulnerability of global supply chains: the unforeseen supply crunches and unpredictable variability in customer demands lead to catastrophic disruption to production planning and management, causing wild swings in productivity for most manufacturing systems. Therefore, a smart and resilient manufacturing system (S&RMS) is promised to withstand such unexpected perturbations and adjust promptly to mitigate their impacts on the system’s stability. However, modeling the system’s resilience to the impacts of disruptive events has not been fully addressed. We investigate a generalized polynomial chaos (gPC) expansion-based discrete-event dynamic system (DEDS) model to capture uncertainties and irregularly disruptive events for manufacturing systems. The analytic approach allows a real-time optimization for production planning to mitigate the impacts of intermittent disruptive events (e.g., supply shortages) and enhance the system’s resilience. The case study on a hybrid bearing manufacturing workshop suggests that the proposed approach allows a timely intervention in production planning to significantly reduce the downtime (around one-fifth of the downtime compared to the one without controls) while guaranteeing maximum productivity under the system perturbations and uncertainties.  more » « less
Award ID(s):
2119334
NSF-PAR ID:
10410834
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Computing and Information Science in Engineering
Volume:
23
Issue:
1
ISSN:
1530-9827
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The COVID-19 crisis has revealed weaknesses and placed great stress on the agri-food system in the U.S. Many believe that it could be a catalyst event that leads to structural changes to improve the food system’s resilience. We use a sample of 220 articles published in prominent national newspapers and agricultural trade journals from March to May 2020 to explore the extent to which farmer responses to COVID-19 covered in the media represent examples of resistant, adaptive, or transformative strategies. The pandemic disrupted the U.S. food system and impacted farmers by reducing access to markets, lowering commodity prices, restricting access to farmworker labor, and shifting consumer demand. Media coverage of farmer responses to these stressors were coded into three alternative pathways: (i) reactive or buffering responses, (ii) adaptive responses; and (iii) transformative responses. Most news media coverage focused on the pandemic’s disruptive impacts on the U.S. food system, related negative impacts on farmers, and short-term responses by institutional actors, including policy-makers and food supply chain industry actors. Farmer responses to pandemic stressors were mentioned less frequently than farmer impacts and responses by institutional actors. The most common examples of farmer responses highlighted in the media reflected farmer reactive and buffering behaviors, which were mentioned significantly more frequently than adaptive or transformative responses. National newspapers were more likely to cover farmer responses and present examples of adaptive and transformative strategies compared to agricultural trade journals. Our findings suggest that news media coverage in the early months of the pandemic largely characterized the event as a rapid onset ‘natural’ disaster that created severe negative impacts. Media devoted more attention to short-term policy responses designed to mitigate these impacts than to farmer responses (in general) or to discussion of the deeper structural causes of and potential solutions to the vulnerabilities revealed by the pandemic. In this way, both national newspaper and agricultural trade journal coverage seems to promote frames that reduce the likelihood of the pandemic becoming the seed of a more resilient system. 
    more » « less
  2. Ghate, A. ; Krishnaiyer, K. ; Paynabar, K. (Ed.)
    This study presents a two-stage stochastic aggregate production planning model to determine the optimal renewable generation capacity, production plan, workforce levels, and machine hours that minimize a production system’s operational cost. The model considers various uncertainties, including demand for final products, machine and labor hours available, and renewable power supply. The goal is to evaluate the feasibility of decarbonizing the manufacturing, transportation, and warehousing operations by adopting onsite wind turbines and solar photovoltaics coupled with battery systems assuming the facilities are energy prosumers. First-stage decisions are the siting and sizing of wind and solar generation, battery capacity, production quantities, hours of labor to keep, hire, or layoff, and regular, overtime, and idle machine hours to allocate over the planning horizon. Second-stage recourse actions include storing products in inventory, subcontracting or backorder, purchasing or selling energy to the main grid, and daily charging or discharging energy in the batteries in response to variable generation. Climate analytics performed in San Francisco and Phoenix permit to derive capacity factors for the renewable energy technologies and test their implementation feasibility. Numerical experiments are presented for three instances: island microgrid without batteries, island microgrid with batteries, and grid-tied microgrid for energy prosumer. Results show favorable levelized costs of energy that are equal to USD48.37/MWh, USD64.91/MWh, and USD36.40/MWh, respectively. The model is relevant to manufacturing companies because it can accelerate the transition towards eco-friendly operations through distributed generation. 
    more » « less
  3. Water is a critical natural resource that sustains the productivity of many economic sectors, whether directly or indirectly. Climate change alongside rapid growth and development are a threat to water sustainability and regional productivity. In this paper, we develop an extension to the economic input-output model to assess the impact of water supply disruptions to regional economies. The model utilizes the inoperability variable, which measures the extent to which an infrastructure system or economic sector is unable to deliver its intended output. While the inoperability concept has been utilized in previous applications, this paper offers extensions that capture the time-varying nature of inoperability as the sectors recover from a disruptive event, such as drought. The model extension is capable of inserting inoperability adjustments within the drought timeline to capture time-varying likelihoods and severities, as well as the dependencies of various economic sectors on water. The model was applied to case studies of severe drought in two regions: (1) the state of Massachusetts (MA) and (2) the US National Capital Region (NCR). These regions were selected to contrast drought resilience between a mixed urban–rural region (MA) and a highly urban region (NCR). These regions also have comparable overall gross domestic products despite significant differences in the distribution and share of the economic sectors comprising each region. The results of the case studies indicate that in both regions, the utility and real estate sectors suffer the largest economic loss; nonetheless, results also identify region-specific sectors that incur significant losses. For the NCR, three sectors in the top 10 ranking of highest economic losses are government-related, whereas in the MA, four sectors in the top 10 are manufacturing sectors. Furthermore, the accommodation sector has also been included in the NCR case intuitively because of the high concentration of museums and famous landmarks. In contrast, the Wholesale Trade sector was among the sectors with the highest economic losses in the MA case study because of its large geographic size conducive for warehouses used as nodes for large-scale supply chain networks. Future modeling extensions could potentially include analysis of water demand and supply management strategies that can enhance regional resilience against droughts. Other regional case studies can also be pursued in future efforts to analyze various categories of drought severity beyond the case studies featured in this paper. 
    more » « less
  4. Abstract

    Water supply infrastructure planning in groundwater-dependent regions is often challenged by uncertainty in future groundwater resource availability. Many major aquifer systems face long-term water table decline due to unsustainable withdrawals. However, many regions, especially those in the developing world, have a scarcity of groundwater data. This creates large uncertainties in groundwater resource predictions and decisions about whether to develop alternative supply sources. Developing infrastructure too soon can lead to unnecessary and expensive irreversible investments, but waiting too long can threaten water supply reliability. This study develops an adaptive infrastructure planning framework that applies Bayesian learning on groundwater observations to assess opportunities to learn about groundwater availability in the future and adapt infrastructure plans. This approach allows planners in data scarce regions to assess under what conditions a flexible infrastructure planning approach, in which initial plans are made but infrastructure development is deferred, can mitigate the risk of overbuilding infrastructure while maintaining water supply reliability in the face of uncertainty. This framework connects engineering options analysis from infrastructure planning to groundwater resources modeling. We demonstrate a proof-of-concept on a desalination planning case for the city of Riyadh, Saudi Arabia, where poor characterization of a fossil aquifer creates uncertainty in how long current groundwater resources can reliably supply demand. We find that a flexible planning approach reduces the risk of over-building infrastructure compared to a traditional static planning approach by 40% with minimal reliability risk (<1%). This striking result may be explained by the slow-evolving nature of groundwater decline, which provides time for planners to react, in contrast to more sudden risks such as flooding where tradeoffs between cost and reliability risk are heightened. This Bayesian approach shows promise for many civil infrastructure domains by providing a method to quantify learning in environmental modeling and assess the effectiveness of adaptive planning.

     
    more » « less
  5. Abstract

    It is widely acknowledged that distributed water systems (DWSs), which integrate distributed water supply and treatment with existing centralized infrastructure, can mitigate challenges to water security from extreme events, climate change, and aged infrastructure. However, it is unclear which are beneficial DWS configurations, i.e., where and at what scale to implement distributed water supply. We develop a mesoscale representation model that approximates DWSs with reduced backbone networks to enable efficient system emulation while preserving key physical realism. Moreover, system emulation allows us to build a multiobjective optimization model for computational policy search that addresses energy utilization and economic impacts. We demonstrate our models on a hypothetical DWS with distributed direct potable reuse (DPR) based on the City of Houston's water and wastewater infrastructure. The backbone DWS with greater thanlink and node reductions achieves satisfactory approximation of global flows and water pressures, to enable configuration optimization analysis. Results from the optimization model reveal case‐specific as well as general opportunities, constraints, and their interactions for DPR allocation. Implementing DPR can be beneficial in areas with high energy intensities of water distribution, considerable local water demands, and commensurate wastewater reuse capacities. The mesoscale modeling approach and the multiobjective optimization model developed in this study can serve as practical decision‐support tools for stakeholders to search for alternative DWS options in urban settings.

     
    more » « less