Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 15, 2025
-
Free, publicly-accessible full text available May 1, 2025
-
Abstract. The widely used open-source community Noah with multi-parameterization options (Noah-MP) land surface model (LSM) isdesigned for applications ranging from uncoupled land surfacehydrometeorological and ecohydrological process studies to coupled numericalweather prediction and decadal global or regional climate simulations. It hasbeen used in many coupled community weather, climate, and hydrology models. Inthis study, we modernize and refactor the Noah-MP LSM by adopting modern Fortrancode standards and data structures, which substantially enhance the modelmodularity, interoperability, and applicability. The modernized Noah-MP isreleased as the version 5.0 (v5.0), which has five key features: (1) enhanced modularization as a result of re-organizing model physics into individualprocess-level Fortran module files, (2) an enhanced data structure with newhierarchical data types and optimized variable declaration andinitialization structures, (3) an enhanced code structure and calling workflowas a result of leveraging the new data structure and modularization, (4) enhanced(descriptive and self-explanatory) model variable naming standards, and (5) enhanced driver and interface structures to be coupled with the hostweather, climate, and hydrology models. In addition, we create a comprehensivetechnical documentation of the Noah-MP v5.0 and a set of model benchmark andreference datasets. The Noah-MP v5.0 will be coupled to variousweather, climate, and hydrology models in the future. Overall, the modernizedNoah-MP allows a more efficient and convenient process for future modeldevelopments and applications.more » « less