skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modernizing the open-source community Noah with multi-parameterization options (Noah-MP) land surface model (version 5.0) with enhanced modularity, interoperability, and applicability
Abstract. The widely used open-source community Noah with multi-parameterization options (Noah-MP) land surface model (LSM) isdesigned for applications ranging from uncoupled land surfacehydrometeorological and ecohydrological process studies to coupled numericalweather prediction and decadal global or regional climate simulations. It hasbeen used in many coupled community weather, climate, and hydrology models. Inthis study, we modernize and refactor the Noah-MP LSM by adopting modern Fortrancode standards and data structures, which substantially enhance the modelmodularity, interoperability, and applicability. The modernized Noah-MP isreleased as the version 5.0 (v5.0), which has five key features: (1) enhanced modularization as a result of re-organizing model physics into individualprocess-level Fortran module files, (2) an enhanced data structure with newhierarchical data types and optimized variable declaration andinitialization structures, (3) an enhanced code structure and calling workflowas a result of leveraging the new data structure and modularization, (4) enhanced(descriptive and self-explanatory) model variable naming standards, and (5) enhanced driver and interface structures to be coupled with the hostweather, climate, and hydrology models. In addition, we create a comprehensivetechnical documentation of the Noah-MP v5.0 and a set of model benchmark andreference datasets. The Noah-MP v5.0 will be coupled to variousweather, climate, and hydrology models in the future. Overall, the modernizedNoah-MP allows a more efficient and convenient process for future modeldevelopments and applications.  more » « less
Award ID(s):
1835739
PAR ID:
10489090
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
EGU
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
16
Issue:
17
ISSN:
1991-9603
Page Range / eLocation ID:
5131 to 5151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Noah‐MP land surface model (LSM) relies on the Monin‐Obukhov (M‐O) Similarity Theory (MOST) to calculate land‐atmosphere exchanges of water, energy, and momentum fluxes. However, MOST flux‐profile relationships neglect canopy‐induced turbulence in the roughness sublayer (RSL) and parameterize within‐canopy turbulence in an ad hoc manner. We implement a new physics scheme (M‐O‐RSL) into Noah‐MP that explicitly parameterizes turbulence in RSL. We compare Noah‐MP simulations employing the M‐O‐RSL scheme (M‐O‐RSL simulations) and the default M‐O scheme (M‐O simulations) against observations obtained from 647 Snow Telemetry (SNOTEL) stations and two AmeriFlux stations in the western United States. M‐O‐RSL simulations of snow water equivalent (SWE) outperform M‐O simulations over 64% and 69% of SNOTEL sites in terms of root‐mean‐square‐error (RMSE) and correlation, respectively. The largest improvements in skill for M‐O‐RSL occur over closed shrubland sites, and the largest degradations in skill occur over deciduous broadleaf forest sites. Differences between M‐O and M‐O‐RSL simulated snowpack are primarily attributable to differences in aerodynamic conductance for heat underneath the canopy top, which modulates sensible heat flux. Differences between M‐O and M‐O‐RSL within‐canopy and below‐canopy sensible heat fluxes affect the amount of heat transported into snowpack and hence change snowmelt when temperatures are close to or above the melting point. The surface energy budget analysis over two AmeriFlux stations shows that differences between M‐O and M‐O‐RSL simulations can be smaller than other model biases (e.g., surface albedo). We intend for the M‐O‐RSL physics scheme to improve performance and uncertainty estimates in weather and hydrological applications that rely on Noah‐MP. 
    more » « less
  2. The influence of the Unified Noah and Noah-MP land surface models (LSMs) on the evolution of cumulus clouds reaching convective initiation (CI) is assessed using infrared brightness temperatures (BT) from GOES-16. Cloud properties from individual cloud objects are examined using output from high-resolution (500 m horizontal grid spacing) model simulations. Cloud objects are tracked over time and related to observed clouds reaching CI to examine differences in cloud extent, longevity, and growth rate. The results demonstrate that differences in assumed surface properties can lead to large discrepancies in the net surface radiative budget, particularly in the sensible and latent heating components where differences exceed 40 W m−2. These differences lead to changes in the local mesoscale circulation patterns that are more pronounced near the edges of forested and grassland boundaries where lower-level convergence is stronger. Higher sensible heating from the Noah-MP LSM produced growth of CI clouds earlier and with increased longevity, which was closer to the timing and growth observed from GOES-16. The increased cloud growth in the Noah-MP experiment results from stronger and deeper updrafts, which lofts more cloud water into the upper levels of the troposphere. The weaker updrafts from the Noah LSM experiment results in shallower convection after CI is detected due to slower growth rates. The differences in cloud properties and growth are directly related to the land surfaces they develop above and point to the importance of accurately representing land properties and radiative characteristics when simulating convection in numerical weather prediction models. 
    more » « less
  3. Abstract The influence of the Unified Noah and Noah‐MP land surface models (LSMs) on the evolution of cumulus clouds reaching convective initiation (CI) is assessed using infrared brightness temperatures (BT) from GOES‐16. Cloud properties from individual cloud objects are examined using output from high‐resolution (500 m horizontal grid spacing) model simulations. Cloud objects are tracked over time and related to observed clouds reaching CI to examine differences in cloud extent, longevity, and growth rate. The results demonstrate that differences in assumed surface properties can lead to large discrepancies in the net surface radiative budget, particularly in the sensible and latent heating components where differences exceed 40 W m−2. These differences lead to changes in the local mesoscale circulation patterns that are more pronounced near the edges of forested and grassland boundaries where lower‐level convergence is stronger. Higher sensible heating from the Noah‐MP LSM produced growth of CI clouds earlier and with increased longevity, which was closer to the timing and growth observed from GOES‐16. The increased cloud growth in the Noah‐MP experiment results from stronger and deeper updrafts, which lofts more cloud water into the upper levels of the troposphere. The weaker updrafts from the Noah LSM experiment results in shallower convection after CI is detected due to slower growth rates. The differences in cloud properties and growth are directly related to the land surfaces they develop above and point to the importance of accurately representing land properties and radiative characteristics when simulating convection in numerical weather prediction models. 
    more » « less
  4. Abstract. Plant roots act as critical pathways of moisture from the subsurface to the atmosphere. Deep moisture uptake by plant roots can provide a seasonal buffer mechanism in regions with a well-defined dry season, such as the southern Amazon. Here, mature forests maintain transpiration (a critical source of atmospheric moisture in this part of the world) during drier months. Most existing state-of-the-art Earth system models do not have the necessary features to simulate subsurface-to-atmosphere moisture variations during dry-downs. These features include groundwater dynamics, a sufficiently deep soil column, dynamic root water uptake (RWU), and a fine model spatial resolution (<5 km). To address this, we present DynaRoot, a dynamic root water uptake scheme implemented in the Noah-Multiparameterization (Noah-MP) land surface model, a widely used model for studying kilometer-scale regional land surface processes. Our modifications include the implementation of DynaRoot, eight additional resolved soil layers reaching a depth of 20 mm, and soil properties that vary with depth. DynaRoot is computationally efficient and ideal for regional- or continental-scale climate simulations. We perform four 20-year uncoupled Noah-MP experiments for a region in the southern Amazon basin. Each experiment incrementally adds physical complexity. The experiments include the default Noah-MP with free drainage (FD), a case with an activated groundwater scheme that resolves water table variations (GW), a case with eight added soil layers and soil properties that vary with depth (SOIL), and a case with DynaRoot activated (ROOT). Our results show that DynaRoot allows mature forests in upland regions to avoid water stress during dry periods by taking up moisture from the deep vadose zone (where antecedent precipitation still drains downward). Conversely, RWU in valleys can access moisture from groundwater (while remaining constrained by the water table). Temporally, we capture a seasonal shift in RWU from shallower layers in wetter months to deeper soil layers in drier months, particularly over regions with dominant evergreen broadleaf (forest) vegetation. Compared to the control case, there is a domain-averaged increase in transpiration of about 29 % during dry months in the ROOT experiment. Critically, the ROOT experiment performs best in simulating the temporal evolution of dry-season transpiration using an observation-based ET (evapotranspiration) product as the reference. Future work will explore the effect of the DynaRoot uptake scheme on atmospheric variables in a coupled modeling framework. 
    more » « less
  5. Abstract Land surface processes are vital to the performance of regional climate models in dynamic downscaling application. In this study, we investigate the sensitivity of the simulation by using the weather research and forecasting (WRF) model at 10-km resolution to the land surface schemes over Central Asia. The WRF model was run for 19 summers from 2000 to 2018 configured with four different land surface schemes including CLM4, Noah-MP, Pleim-Xiu and SSiB, hereafter referred as Exp-CLM4, Exp-Noah-MP, Exp-PX and Exp-SSiB respectively. The initial and boundary conditions for the WRF model simulations were provided by the National Centers for Environmental Prediction Final (NCEP-FNL) Operational Global Analysis data. The ERA-Interim reanalysis (ERAI), the GHCN-CAMS and the CRU gridded data were used to comprehensively evaluate the WRF simulations. Compared with the reanalysis and observational data, the WRF model can reasonably reproduce the spatial patterns of summer mean 2-m temperature, precipitation, and large- scale atmospheric circulation. The simulations, however, are sensitive to the option of land surface scheme. The performance of Exp-CLM4 and Exp-SSiB are better than that of Exp-Noah-MP and Exp-PX assessed by Multivariable Integrated Evaluation (MVIE) method. To comprehensively understand the dynamic and physical mechanisms for the WRF model’s sensitivity to land surface schemes, the differences in the surface energy balance between Ave-CLM4-SSiB (the ensemble average of Exp-CLM4 and Exp-SSiB) and Ave-NoanMP-PX (the ensemble average of Exp-Noah-MP and Exp-PX) are analyzed in detail. The results demonstrate that the sensible and latent heat fluxes are respectively lower by 30.42 W·m−2and higher by 14.86 W·m−2in Ave-CLM4-SSiB than that in Ave-NoahMP-PX. As a result, large differences in geopotential height occur over the simulation domain. The simulated wind fields are subsequently influenced by the geostrophic adjustment process, thus the simulations of 2-m temperature, surface skin temperature and precipitation are respectively lower by about 2.08 ℃, 2.23 ℃ and 18.56 mm·month−1in Ave-CLM4-SSiB than that in Ave-NoahMP-PX over Central Asia continent. 
    more » « less