skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Ji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A charge density wave (CDW) is a phase of matter characterized by a periodic modulation of the valence electron density accompanied by a distortion of the lattice structure. The microscopic details of CDW formation are closely tied to the dynamic charge susceptibility, χ(q, ω), which describes the behavior of electronic collective modes. Despite decades of extensive study, the behavior of χ(q, ω) in the vicinity of a CDWtransition has never been measured with high energy resolution (∼meV). Here, we investigate the canonical CDW transition in ErTe3 using momentum-resolved electron energy loss spectroscopy (M-EELS), a technique uniquely sensitive to valence band charge excitations. Unlike phonons in these materials, which undergo conventional softening due to the Kohn anomaly at the CDW wavevector, the electronic excitations display purely relaxational dynamics that are well described by a diffusive model. The diffusivity peaks around 250 K, just below the critical temperature. Additionally, we report, for the first time, a divergence in the real part of χ(q, ω) in the static limit (ω → 0), a phenomenon predicted to characterize CDWs since the 1970s. These results highlight the importance of energy- and momentum-resolved measurements of electronic susceptibility and demonstrate the power of M-EELS as a versatile probe of charge dynamics in materials. 
    more » « less
    Free, publicly-accessible full text available December 9, 2025
  2. Abstract Land use change (LUC) alters the global carbon (C) stock, but our estimation of the alteration remains uncertain and is a major impediment to predicting the global C cycle. The uncertainty is partly due to the limited number and geographical bias of observations, and limited exploration of its predictors. Here we generated a comprehensive global database of 5,980 observations from 790 articles. The number of sites evaluated is at least seven times larger than in previous meta‐analyses. Our constrained estimates of different LUC's effects on soil organic C (SOC) and their variations across global climates reveal underestimation/overestimation in previous estimates. Converting forests and grasslands to croplands reduced SOC by 24.5% ± 1.53% (−11.03 ± 1.06 Mg ha−1) and 22.7% ± 1.22% (−8.09 ± 0.67 Mg ha−1), while 28.0% ± 1.56% (4.46 ± 0.42 Mg ha−1) and 33.5% ± 1.68% (5.8 ± 0.38 Mg ha−1) increases, respectively, were obtained in the reverse processes. Converting forests to grasslands decreased SOC by 2.1% ± 1.22% (−1.13 ± 0.44 Mg ha−1), while the reverse process increased SOC by 18.6% ± 1.73% (3.31 ± 0.51 Mg ha−1). Modeled relative importance of 10 drivers of LUC's impact on SOC revealed that higher initial SOC (iSOC) does not solely determine SOC loss in SOC‐negative LUC scenarios as previously proposed. Across four decades, reconverting croplands to forests and grasslands recovered only 49.5% (6.1 ± 0.51 Mg ha−1) and 75.3% (7.0 ± 0.38 Mg ha−1) of the iSOC, respectively, indicating the need for protecting C‐rich ecosystems. Our global data set advances information on LUC's effect on SOC and can be valuable to constrain Earth system models to reliably estimate global SOC stocks and plan climate change mitigation strategies. 
    more » « less
  3. Abstract Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors. 
    more » « less
    Free, publicly-accessible full text available July 18, 2025
  4. Abstract Emerging evidence points out that the responses of soil organic carbon (SOC) to nitrogen (N) addition differ along the soil profile, highlighting the importance of synthesizing results from different soil layers. Here, using a global meta‐analysis, we found that N addition significantly enhanced topsoil (0–30 cm) SOC by 3.7% (±1.4%) in forests and grasslands. In contrast, SOC in the subsoil (30–100 cm) initially increased with N addition but decreased over time. The model selection analysis revealed that experimental duration and vegetation type are among the most important predictors across a wide range of climatic, environmental, and edaphic variables. The contrasting responses of SOC to N addition indicate the importance of considering deep soil layers, particularly for long‐term continuous N deposition. Finally, the lack of depth‐dependent SOC responses to N addition in experimental and modeling frameworks has likely resulted in the overestimation of changes in SOC storage under enhanced N deposition. 
    more » « less
  5. Quantitative assessment of movement using motion capture provides insights on mobility which are not evident from clinical evaluation. Here, in older individuals that were healthy or had suffered a stroke, we aimed to investigate their balance in terms of changes in body kinematics and muscle activity. Our research question involved determining the effects on post- compared to pre-sensorimotor training exercises on maintaining or improving balance. Our research hypothesis was that training would improve the gait and balance by increasing joint angles and extensor muscle activities in lower extremities and spatiotemporal measures of stroke and elderly people. This manuscript describes a motion capture-based evaluation protocol to assess joint angles and spatiotemporal parameters (cadence, step length and walking speed), as well as major extensor and flexor muscle activities. We also conducted a case study on a healthy older participant (male, age, 65) and an older participant with chronic stroke (female, age, 55). Both participants performed a walking task along a path with a rectangular shape which included tandem walking forward, right side stepping, tandem walking backward, left side stepping to the starting location. For the stroke participant, the training improved the task completion time by 19 s. Her impaired left leg had improved step length (by 0.197 m) and cadence (by 10 steps/min) when walking forward, and cadence (by 12 steps/min) when walking backward. The non-impaired right leg improved cadence when walking forward (by 15 steps/min) and backward (by 27 steps/min). The joint range of motion (ROM) did not change in most cases. However, the ROM of the hip joint increased significantly by 5.8 degrees (p = 0.019) on the left leg side whereas the ROMs of hip joint and knee joint increased significantly by 4.1 degrees (p = 0.046) and 8.1 degrees (p = 0.007) on the right leg side during backward walking. For the healthy participant, the significant changes were only found in his right knee joint ROM having increased by 4.2 degrees (p = 0.031) and in his left ankle joint ROM having increased by 5.5 degrees (p = 0.006) during the left side stepping. 
    more » « less
  6. Techniques of matrix completion aim to impute a large portion of missing entries in a data matrix through a small portion of observed ones. In practice, prior information and special structures are usually employed in order to improve the accuracy of matrix completion. In this paper, we propose a unified nonconvex optimization framework for matrix completion with linearly parameterized factors. In particular, by introducing a condition referred to as Correlated Parametric Factorization, we conduct a unified geometric analysis for the nonconvex objective by establishing uniform upper bounds for low-rank estimation resulting from any local minimizer. Perhaps surprisingly, the condition of Correlated Parametric Factorization holds for important examples including subspace-constrained matrix completion and skew-symmetric matrix completion. The effectiveness of our unified nonconvex optimization method is also empirically illustrated by extensive numerical simulations. 
    more » « less
  7. Anandkumar Animashree (Ed.)
    Techniques of matrix completion aim to impute a large portion of missing entries in a data matrix through a small portion of observed ones. In practice, prior information and special structures are usually employed in order to improve the accuracy of matrix completion. In this paper, we propose a unified nonconvex optimization framework for matrix completion with linearly parameterized factors. In particular, by introducing a condition referred to as Correlated Parametric Factorization, we conduct a unified geometric analysis for the nonconvex objective by establishing uniform upper bounds for low-rank estimation resulting from any local minimizer. Perhaps surprisingly, the condition of Correlated Parametric Factorization holds for important examples including subspace-constrained matrix completion and skew-symmetric matrix completion. The effectiveness of our unified nonconvex optimization method is also empirically illustrated by extensive numerical simulations. 
    more » « less