Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available September 1, 2025
-
Abstract This paper describes Epihiper, a state-of-the-art, high performance computational modeling framework for epidemic science. The Epihiper modeling framework supports custom disease models, and can simulate epidemics over dynamic, large-scale networks while supporting modulation of the epidemic evolution through a set of user-programmable interventions. The nodes and edges of the social-contact network have customizable sets of static and dynamic attributes which allow the user to specify intervention target sets at a very fine-grained level; these also permit the network to be updated in response to nonpharmaceutical interventions, such as school closures. The execution of interventions is governed by trigger conditions, which are Boolean expressions formed using any of Epihiper’s primitives (e.g. the current time, transmissibility) and user-defined sets (e.g. people with work activities). Rich expressiveness, extensibility, and high-performance computing responsiveness were central design goals to ensure that the framework could effectively target realistic scenarios at the scale and detail required to support the large computational designs needed by state and federal public health policymakers in their efforts to plan and respond in the event of epidemics. The modeling framework has been used to support the CDC Scenario Modeling Hub for COVID-19 response, and was a part of a hybrid high-performance cloud system that was nominated as a finalist for the 2021 ACM Gordon Bell Special Prize for high performance computing-based COVID-19 Research.more » « less
-
Disease surveillance systems provide early warnings of disease outbreaks before they become public health emergencies. However, pandemics containment would be challenging due to the complex immunity landscape created by multiple variants. Genomic surveillance is critical for detecting novel variants with diverse characteristics and importation/emergence times. Yet, a systematic study incorporating genomic monitoring, situation assessment, and intervention strategies is lacking in the literature. We formulate an integrated computational modeling framework to study a realistic course of action based on sequencing, analysis, and response. We study the effects of the second variant’s importation time, its infectiousness advantage and, its cross-infection on the novel variant’s detection time, and the resulting intervention scenarios to contain epidemics driven by two-variants dynamics. Our results illustrate the limitation in the intervention’s effectiveness due to the variants’ competing dynamics and provide the following insights: i) There is a set of importation times that yields the worst detection time for the second variant, which depends on the first variant’s basic reproductive number; ii) When the second variant is imported relatively early with respect to the first variant, the cross-infection level does not impact the detection time of the second variant. We found that depending on the target metric, the best outcomes are attained under different interventions’ regimes. Our results emphasize the importance of sustained enforcement of Non-Pharmaceutical Interventions on preventing epidemic resurgence due to importation/emergence of novel variants. We also discuss how our methods can be used to study when a novel variant emerges within a population.more » « less
-
ABSTRACT We study allocation of COVID-19 vaccines to individuals based on the structural properties of their underlying social contact network. Using a realistic representation of a social contact network for the Commonwealth of Virginia, we study how a limited number of vaccine doses can be strategically distributed to individuals to reduce the overall burden of the pandemic.We show that allocation of vaccines based on individuals’ degree (number of social contacts) and total social proximity time is significantly more effective than the usually used age-based allocation strategy in reducing the number of infections, hospitalizations and deaths. The overall strategy is robust even: (𝑖) if the social contacts are not estimated correctly; (𝑖𝑖) if the vaccine efficacy is lower than expected or only a single dose is given; (𝑖𝑖𝑖) if there is a delay in vaccine production and deployment; and (𝑖𝑣) whether or not non-pharmaceutical interventions continue as vaccines are deployed. For reasons of implementability, we have used degree, which is a simple structural measure and can be easily estimated using several methods, including the digital technology available today. These results are significant, especially for resource-poor countries, where vaccines are less available, have lower efficacy, and are more slowly distributed.more » « less
-
Nonpharmaceutical interventions (NPIs) such as mask wearing can be effective in mitigating the spread of infectious diseases. Therefore, understanding the behavioral dynamics of NPIs is critical for characterizing the dynamics of disease spread. Nevertheless, standard infection models tend to focus only on disease states, overlooking the dynamics of “beneficial contagions,” e.g., compliance with NPIs. In this work, we investigate the concurrent spread of disease and mask-wearing behavior over multiplex networks. Our proposed framework captures both the competing and complementary relationships between the dueling contagion processes. Further, the model accounts for various behavioral mechanisms that influence mask wearing, such as peer pressure and fear of infection. Our results reveal that under the coupled disease–behavior dynamics, the attack rate of a disease—as a function of transition probability—exhibits a critical transition. Specifically, as the transmission probability exceeds a critical threshold, the attack rate decreases abruptly due to sustained mask-wearing responses. We empirically explore the causes of the critical transition and demonstrate the robustness of the observed phenomena. Our results highlight that without proper enforcement of NPIs, reductions in the disease transmission probability via other interventions may not be sufficient to reduce the final epidemic size.more » « less