skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Epihiper —A high performance computational modeling framework to support epidemic science
Abstract This paper describes Epihiper, a state-of-the-art, high performance computational modeling framework for epidemic science. The Epihiper modeling framework supports custom disease models, and can simulate epidemics over dynamic, large-scale networks while supporting modulation of the epidemic evolution through a set of user-programmable interventions. The nodes and edges of the social-contact network have customizable sets of static and dynamic attributes which allow the user to specify intervention target sets at a very fine-grained level; these also permit the network to be updated in response to nonpharmaceutical interventions, such as school closures. The execution of interventions is governed by trigger conditions, which are Boolean expressions formed using any of Epihiper’s primitives (e.g. the current time, transmissibility) and user-defined sets (e.g. people with work activities). Rich expressiveness, extensibility, and high-performance computing responsiveness were central design goals to ensure that the framework could effectively target realistic scenarios at the scale and detail required to support the large computational designs needed by state and federal public health policymakers in their efforts to plan and respond in the event of epidemics. The modeling framework has been used to support the CDC Scenario Modeling Hub for COVID-19 response, and was a part of a hybrid high-performance cloud system that was nominated as a finalist for the 2021 ACM Gordon Bell Special Prize for high performance computing-based COVID-19 Research.  more » « less
Award ID(s):
1916805 1918656 2028004 2027541
PAR ID:
10562049
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
PNAS Nexus
Volume:
4
Issue:
1
ISSN:
2752-6542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract During outbreaks of emerging infectious diseases, internationally connected cities often experience large and early outbreaks, while rural regions follow after some delay. This hierarchical structure of disease spread is influenced primarily by the multiscale structure of human mobility. However, during the COVID-19 epidemic, public health responses typically did not take into consideration the explicit spatial structure of human mobility when designing nonpharmaceutical interventions (NPIs). NPIs were applied primarily at national or regional scales. Here, we use weekly anonymized and aggregated human mobility data and spatially highly resolved data on COVID-19 cases at the municipality level in Mexico to investigate how behavioral changes in response to the pandemic have altered the spatial scales of transmission and interventions during its first wave (March–June 2020). We find that the epidemic dynamics in Mexico were initially driven by exports of COVID-19 cases from Mexico State and Mexico City, where early outbreaks occurred. The mobility network shifted after the implementation of interventions in late March 2020, and the mobility network communities became more disjointed while epidemics in these communities became increasingly synchronized. Our results provide dynamic insights into how to use network science and epidemiological modeling to inform the spatial scale at which interventions are most impactful in mitigating the spread of COVID-19 and infectious diseases in general. 
    more » « less
  2. The COVID-19 preparedness plans by the Centers for Disease Control and Prevention strongly underscores the need for efficient and effective testing strategies. This, in turn, calls upon the design and development of statistical sampling and testing of COVID-19 strategies. However, the evaluation of operational details requires a detailed representation of human behaviors in epidemic simulation models. Traditional epidemic simulations are mainly based upon system dynamic models, which use differential equations to study macro-level and aggregated behaviors of population subgroups. As such, individual behaviors (e.g., personal protection, commute conditions, social patterns) can’t be adequately modeled and tracked for the evaluation of health policies and action strategies. Therefore, this paper presents a network-based simulation model to optimize COVID-19 testing strategies for effective identifications of virus carriers in a spatial area. Specifically, we design a data-driven risk scoring system for statistical sampling and testing of COVID-19. This system collects real-time data from simulated networked behaviors of individuals in the spatial network to support decision-making during the virus spread process. Experimental results showed that this framework has superior performance in optimizing COVID-19 testing decisions and effectively identifying virus carriers from the population. 
    more » « less
  3. Epidemics like Covid-19 and Ebola have impacted people’s lives signifcantly. The impact of mobility of people across the countries or states in the spread of epidemics has been signifcant. The spread of disease due to factors local to the population under consideration is termed the endogenous spread. The spread due to external factors like migration, mobility, etc., is called the exogenous spread. In this paper, we introduce the Exo-SIR model, an extension of the popular SIR model and a few variants of the model. The novelty in our model is that it captures both the exogenous and endogenous spread of the virus. First, we present an analytical study. Second, we simulate the Exo-SIR model with and without assuming contact network for the population. Third, we implement the Exo-SIR model on real datasets regarding Covid-19 and Ebola. We found that endogenous infection is infuenced by exogenous infection. Furthermore, we found that the Exo-SIR model predicts the peak time better than the SIR model. Hence, the Exo-SIR model would be helpful for governments to plan policy interventions at the time of a pandemic. Keywords Covid-19, Ebola, Epidemic modeling, Compartment model, Exogenous infection, Endogenous infection, SIR, Exo-SIR 
    more » « less
  4. With the recent advances in human sensing, the push to integrate human mobility tracking with epidemic modeling highlights the lack of groundwork at the mesoscale (e.g., city-level) for both contact tracing and transmission dynamics. Although GPS data has been used to study city-level outbreaks in the past, existing approaches fail to capture the path of infection at the individual level. Consequently, in this paper, we extend epidemics prediction from estimating the size of an outbreak at the population level to estimating the individuals who may likely get infected within a finite period of time. To this end, we propose a network science based method to first build and then prune the dynamic contact networks for recurring interactions; these networks can serve as the backbone topology for mechanistic epidemics modeling. We test our method using Foursquare’s Points of Interest (POI) smart phone geolocation data from over 1.3 million devices to better approximate the COVID-19 infection curves for two major (yet very different) US cities, (i.e., Austin and New York City), while maintaining the granularity of individual transmissions and reducing model uncertainty. Our method provides a foundation for building a disease prediction framework at the mesoscale that can help both policy makers and individuals better understand their estimated state of health and help the pandemic mitigation efforts. 
    more » « less
  5. Computational epidemiology aims to develop computer models and decision support systems that understand, predict, and control a disease’s spatiotemporal diffusion throughout a population. Researchers can use these models to forecast an epidemic’s future course, allocate scarce resources and assess depletion of current resources, infer disease parameters, and evaluate various interventions. Individual behavior and public policy are critical in understanding and controlling infectious diseases, and computational techniques provide a potentially powerful study tool. The COVID-19 pandemic has had significant social, health, economic, and political ramifications worldwide, and its impact will undoubtedly continue to grow in the coming months.Here we outline an approach to support the COVID-19 response with examples that are rooted in network science and data-driven modeling. 
    more » « less