skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Kuan-Wen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The thermal Hall effect recently provided intriguing probes to the ground state of exotic quantum matters. These observations of transverse thermal Hall signals lead to the debate on the fermionic versus bosonic origins of these phenomena. The recent report of quantum oscillations (QOs) in Kitaev spin liquid points to a possible resolution. The Landau level quantization would most likely capture only the fermionic thermal transport effect. However, the QOs in the thermal Hall effect are generally hard to detect. In this work, we report the observation of a large oscillatory thermal Hall effect of correlated Kagome metals. We detect a 180-degree phase change of the oscillation and demonstrate the phase flip as an essential feature for QOs in the thermal transport properties. More importantly, the QOs in the thermal Hall channel are more profound than those in the electrical Hall channel, which strongly violates the Wiedemann–Franz (WF) law for QOs. This result presents the oscillatory thermal Hall effect as a powerful probe to the correlated quantum materials. 
    more » « less
  2. Abstract Metals with kagome lattice provide bulk materials to host both the flat-band and Dirac electronic dispersions. A new family of kagome metals is recently discovered inAV6Sn6. The Dirac electronic structures of this material needs more experimental evidence to confirm. In the manuscript, we investigate this problem by resolving the quantum oscillations in both electrical transport and magnetization in ScV6Sn6. The revealed orbits are consistent with the electronic band structure models. Furthermore, the Berry phase of a dominating orbit is revealed to be aroundπ, providing direct evidence for the topological band structure, which is consistent with calculations. Our results demonstrate a rich physics and shed light on the correlated topological ground state of this kagome metal. 
    more » « less
  3. Abstract In the recently discovered kagome metal CsV3Sb5, an intriguing proposal invoking a doped Chern insulator state suggests the presence of small Chern Fermi pockets hosting spontaneous orbital-currents and large orbital magnetic moments. While the net thermodynamic magnetization is nearly insensitive to these moments, due to their antiferromagnetic alignment, their presence can be revealed by the Zeeman effect, which shifts electron energies in magnetic fields with a proportionality given by the effectiveg−factor. Here, we determine theg-factor using the spin-zero effect in magnetic quantum oscillations. A largeg-factor enhancement is visible only in magnetic breakdown orbits between conventional and concentrated Berry curvature Fermi pockets that host large orbital moments. Such Berry-curvature-generated large orbital moments are almost always concealed by other effects. In this system, however, magnetic breakdown orbits due to the proximity to a conventional Fermi-surface section allow them to be visibly manifested in magnetic quantum oscillations. Our results provide a remarkable example of the interplay between electronic correlations and more conventional electronic bands in quantum materials. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract: Thermoelectricity allows direct conversion between heat and electricity, providing alternatives for green energy technologies. Despite these advantages, for most materials the energy conversion efficiency is limited by the tendency for the electrical and thermal conductivity to be proportional to each other and the Seebeck coefficient to be small. Here we report counter examples, where the heavy fermion compounds Yb TM 2 Zn 20 ( TM = Co, Rh, Ir) exhibit enhanced thermoelectric performance including a large power factor ( PF = 74 μW/cm-K 2 ; TM = Ir) and a high figure of merit ( ZT = 0.07; TM = Ir) at 35 K. The combination of the strongly hybridized electronic state originating from the Yb f -electrons and the novel structural features (large unit cell and possible soft phonon modes) leads to high power factors and small thermal conductivity values. This demonstrates that with further optimization these systems could provide a platform for the next generation of low temperature thermoelectric materials. 
    more » « less