skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Shaochen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Workflow for developing anin vitrobiomimetic myotendinous junction (MTJ): tissue properties and SEM data are measured (left), informing 3D printing of microstructure and properties (middle). MTJ formation occurs naturally within 2 weeks (right). 
    more » « less
    Free, publicly-accessible full text available November 19, 2025
  2. Abstract Controllable and long‐term release remains a great challenge in current drug delivery systems. Benefiting from their efficient drug loading and painless administration, microneedles (MNs) have emerged as a promising platform for transdermal drug delivery, while they often fail to achieve long‐term tissue adhesion and controllable extended drug release. Here, 3D printing of an innovative MN patch is presented with succulent‐inspired responsive microstructures and light‐controllable long‐term release capability. The MN exhibits a reversible shrink‐swell volume change behavior in response to surrounding humidity, which enables sufficient mechanical strength for skin penetration under the shrinkage conditions and efficient long‐term adhesion when swollen in skin tissues. Moreover, the MN patch introduces a controllable long‐term drug release system, achieved through the integration of thiolated heparin (Hep‐SH) for sustained growth factor release and graphene oxide (GO) nanosheets for controlled drug release via near infrared (NIR) laser irradiation. The MN patches with growth factor loading have good biocompatibility and can promote the proliferation, migration, and proangiogenesis of endothelial cells is further demonstrated. Thus, it is believed that such flexible MN patches can be promising candidates for controllable long‐term transdermal drug delivery as well as other related tissue engineering applications. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  3. Abstract The heart, which is the first organ to develop, is highly dependent on its form to function1,2. However, how diverse cardiac cell types spatially coordinate to create the complex morphological structures that are crucial for heart function remains unclear. Here we integrated single-cell RNA-sequencing with high-resolution multiplexed error-robust fluorescence in situ hybridization to resolve the identity of the cardiac cell types that develop the human heart. This approach also provided a spatial mapping of individual cells that enables illumination of their organization into cellular communities that form distinct cardiac structures. We discovered that many of these cardiac cell types further specified into subpopulations exclusive to specific communities, which support their specialization according to the cellular ecosystem and anatomical region. In particular, ventricular cardiomyocyte subpopulations displayed an unexpected complex laminar organization across the ventricular wall and formed, with other cell subpopulations, several cellular communities. Interrogating cell–cell interactions within these communities using in vivo conditional genetic mouse models and in vitro human pluripotent stem cell systems revealed multicellular signalling pathways that orchestrate the spatial organization of cardiac cell subpopulations during ventricular wall morphogenesis. These detailed findings into the cellular social interactions and specialization of cardiac cell types constructing and remodelling the human heart offer new insights into structural heart diseases and the engineering of complex multicellular tissues for human heart repair. 
    more » « less
  4. Abstract The morphological architecture of photosynthetic corals modulates the light capture and functioning of the coral-algal symbiosis on shallow-water corals. Since corals can thrive on mesophotic reefs under extreme light-limited conditions, we hypothesized that microskeletal coral features enhance light capture under low-light environments. Utilizing micro-computed tomography scanning, we conducted a novel comprehensive three-dimensional (3D) assessment of the small-scale skeleton morphology of the depth-generalist coral Stylophora pistillata collected from shallow (4–5 m) and mesophotic (45–50 m) depths. We detected a high phenotypic diversity between depths, resulting in two distinct morphotypes, with calyx diameter, theca height, and corallite marginal spacing contributing to most of the variation between depths. To determine whether such depth-specific morphotypes affect coral light capture and photosynthesis on the corallite scale, we developed 3D simulations of light propagation and photosynthesis. We found that microstructural features of corallites from mesophotic corals provide a greater ability to use solar energy under light-limited conditions; while corals associated with shallow morphotypes avoided excess light through self-shading skeletal architectures. The results from our study suggest that skeleton morphology plays a key role in coral photoadaptation to light-limited environments. 
    more » « less