When dealing with data from distinct locations, machine learning algorithms tend to demonstrate an implicit preference of some locations over the others, which constitutes biases that sabotage the spatial fairness of the algorithm. This unfairness can easily introduce biases in subsequent decision-making given broad adoptions of learning-based solutions in practice. However, locational biases in AI are largely understudied. To mitigate biases over locations, we propose a locational meta-referee (Meta-Ref) to oversee the few-shot meta-training and meta-testing of a deep neural network. Meta-Ref dynamically adjusts the learning rates for training samples of given locations to advocate a fair performance across locations, through an explicit consideration of locational biases and the characteristics of input data. We present a three-phase training framework to learn both a meta-learning-based predictor and an integrated Meta-Ref that governs the fairness of the model. Once trained with a distribution of spatial tasks, Meta-Ref is applied to samples from new spatial tasks (i.e., regions outside the training area) to promote fairness during the fine-tune step. We carried out experiments with two case studies on crop monitoring and transportation safety, which show Meta-Ref can improve locational fairness while keeping the overall prediction quality at a similar level.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 25, 2025
-
This paper proposes a physics-guided neural network model to predict crop yield and maintain the fairness over space. Failures to preserve the spatial fairness in predicted maps of crop yields can result in biased policies and intervention strategies in the distribution of assistance or subsidies in supporting individuals at risk. Existing methods for fairness enforcement are not designed for capturing the complex physical processes that underlie the crop growing process, and thus are unable to produce good predictions over large regions under different weather conditions and soil properties. More importantly, the fairness is often degraded when existing methods are applied to different years due to the change of weather conditions and farming practices. To address these issues, we propose a physics-guided neural network model, which leverages the physical knowledge from existing physics-based models to guide the extraction of representative physical information and discover the temporal data shift across years. In particular, we use a reweighting strategy to discover the relationship between training years and testing years using the physics-aware representation. Then the physics-guided neural network will be refined via a bi-level optimization process based on the reweighted fairness objective. The proposed method has been evaluated using real county-level crop yield data and simulated data produced by a physics-based model. The results demonstrate that this method can significantly improve the predictive performance and preserve the spatial fairness when generalized to different years.
-
Fairness related to locations (i.e., "where") is critical for the use of machine learning in a variety of societal domains involving spatial datasets (e.g., agriculture, disaster response, urban planning). Spatial biases incurred by learning, if left unattended, may cause or exacerbate unfair distribution of resources, social division, spatial disparity, etc. The goal of this work is to develop statistically-robust formulations and model-agnostic learning strategies to understand and promote spatial fairness. The problem is challenging as locations are often from continuous spaces with no well-defined categories (e.g., gender), and statistical conclusions from spatial data are fragile to changes in spatial partitionings and scales. Existing studies in fairness-driven learning have generated valuable insights related to non-spatial factors including race, gender, education level, etc., but research to mitigate location-related biases still remains in its infancy, leaving the main challenges unaddressed. To bridge the gap, we first propose a robust space-as-distribution (SPAD) representation of spatial fairness to reduce statistical sensitivity related to partitioning and scales in continuous space. Furthermore, we propose a new SPAD-based stochastic strategy to efficiently optimize over an extensive distribution of fairness criteria, and a bi-level training framework to enforce fairness via adaptive adjustment of priorities among locations. Experiments on real-world crop monitoring show that SPAD can effectively reduce sensitivity in fairness evaluation and the stochastic bi-level training framework can greatly improve the fairness.more » « less