skip to main content


Title: Physics Guided Neural Networks for Time-Aware Fairness: An Application in Crop Yield Prediction

This paper proposes a physics-guided neural network model to predict crop yield and maintain the fairness over space. Failures to preserve the spatial fairness in predicted maps of crop yields can result in biased policies and intervention strategies in the distribution of assistance or subsidies in supporting individuals at risk. Existing methods for fairness enforcement are not designed for capturing the complex physical processes that underlie the crop growing process, and thus are unable to produce good predictions over large regions under different weather conditions and soil properties. More importantly, the fairness is often degraded when existing methods are applied to different years due to the change of weather conditions and farming practices. To address these issues, we propose a physics-guided neural network model, which leverages the physical knowledge from existing physics-based models to guide the extraction of representative physical information and discover the temporal data shift across years. In particular, we use a reweighting strategy to discover the relationship between training years and testing years using the physics-aware representation. Then the physics-guided neural network will be refined via a bi-level optimization process based on the reweighted fairness objective. The proposed method has been evaluated using real county-level crop yield data and simulated data produced by a physics-based model. The results demonstrate that this method can significantly improve the predictive performance and preserve the spatial fairness when generalized to different years.

 
more » « less
Award ID(s):
2147195
PAR ID:
10504016
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
37
Issue:
12
ISSN:
2159-5399
Page Range / eLocation ID:
14223 to 14231
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Direct numerical simulation (DNS) of turbulent flows is computationally expensive and cannot be applied to flows with large Reynolds numbers. Low-resolution large eddy simulation (LES) is a popular alternative, but it is unable to capture all of the scales of turbulent transport accurately. Reconstructing DNS from low-resolution LES is critical for large-scale simulation in many scientific and engineering disciplines, but it poses many challenges to existing super-resolution methods due to the complexity of turbulent flows and computational cost of generating frequent LES data. We propose a physics-guided neural network for reconstructing frequent DNS from sparse LES data by enhancing its spatial resolution and temporal frequency. Our proposed method consists of a partial differential equation (PDE)-based recurrent unit for capturing underlying temporal processes and a physics-guided super-resolution model that incorporates additional physical constraints. We demonstrate the effectiveness of both components in reconstructing the Taylor-Green Vortex using sparse LES data. Moreover, we show that the proposed recurrent unit can preserve the physical characteristics of turbulent flows by leveraging the physical relationships in the Navier-Stokes equation. 
    more » « less
  2. Accurate and timely crop mapping is essential for yield estimation, insurance claims, and conservation efforts. Over the years, many successful machine learning models for crop mapping have been developed that use just the multispectral imagery from satellites to predict crop type over the area of interest. However, these traditional methods do not account for the physical processes that govern crop growth. At a high level, crop growth can be envisioned as physical parameters, such as weather and soil type, acting upon the plant, leading to crop growth, which can be observed via satellites. In this paper, we propose a Weather-based Spatio-Temporal segmentation network with ATTention (WSTATT), a deep learning model that leverages this understanding of crop growth by formulating it as an inverse model that combines weather (Daymet) and satellite imagery (Sentinel-2) to generate accurate crop maps. We show that our approach provides significant improvements over existing algorithms that solely rely on spectral imagery by comparing segmentation maps and F1 classification scores. Furthermore, effective use of attention in WSTATT architecture enables the detection of crop types earlier in the season (up to 5 months in advance), which is very useful for improving food supply projections. We finally discuss the impact of weather by correlating our results with crop phenology to show that WSTATT is able to capture the physical properties of crop growth. 
    more » « less
  3. Shekhar, Shashi ; Papalexakis, Vagelis ; Gao, Jing ; Jiang, Zhe ; Riondato, Matteo (Ed.)
    Accurate and timely crop mapping is essential for yield estimation, insurance claims, and conservation efforts. Over the years, many successful machine learning models for crop mapping have been developed that use just the multispectral imagery from satellites to predict crop type over the area of interest. However, these traditional methods do not account for the physical processes that govern crop growth. At a high level, crop growth can be envisioned as physical parameters, such as weather and soil type, acting upon the plant, leading to crop growth which can be observed via satellites. In this paper, we propose a weather-based Spatio-Temporal segmentation network with ATTention (WSTATT), a deep learning model that leverages this understanding of crop growth by formulating it as an inverse model that combines weather (Daymet) and satellite imagery (Sentinel-2) to generate accurate crop maps. We show that our approach provides significant improvements over existing algorithms that solely rely on spectral imagery by comparing segmentation maps and F1 classification scores. Furthermore, effective use of attention in WSTATT architecture enables the detection of crop types earlier in the season (up to 5 months in advance), which is very useful for improving food supply projections. We finally discuss the impact of weather by correlating our results with crop phenology to show that WST 
    more » « less
  4. Abstract

    Extreme weather poses a major challenge to global food security by causing sharp drops in crop yield and supply. International crop trade can potentially alleviate such challenge by reallocating crop commodities. However, the influence of extreme weather stress and synchronous crop yield anomalies on trade linkages among countries remains unexplored. Here we use the international wheat trade network, develop two network-based covariates (i.e., difference in extreme weather stress and short-term synchrony of yield fluctuations between countries), and test specialized statistical and machine-learning methods. We find that countries with larger differences in extreme weather stress and synchronous yield variations tend to be trade partners and with higher trade volumes, even after controlling for factors conventionally implemented in international trade models (e.g., production level and trade agreement). These findings highlight the need to improve the current international trade network by considering the patterns of extreme weather stress and yield synchrony among countries.

     
    more » « less
  5. This paper proposes a physics-guided recurrent neural network model (PGRNN) that combines RNNs and physics-based models to leverage their complementary strengths and improve the modeling of physical processes. Specifically, we show that a PGRNN can improve prediction accuracy over that of physical models, while generating outputs consistent with physical laws, and achieving good generalizability. Standard RNNs, even when producing superior prediction accuracy, often produce physically inconsistent results and lack generalizability. We further enhance this approach by using a pre-training method that leverages the simulated data from a physics-based model to address the scarcity of observed data. Although we present and evaluate this methodology in the context of modeling the dynamics of temperature in lakes, it is applicable more widely to a range of scientific and engineering disciplines where mechanistic (also known as process-based) models are used, e.g., power engineering, climate science, materials science, computational chemistry, and biomedicine. 
    more » « less