skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Chen, Xiaobo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study outlines the preparation and characterization of a unique superlattice composed of indium oxide (In2O3) vertex-truncated nano-octahedra, along with an exploration of its response to high-pressure conditions. Transmission electron microscopy and scanning transmission electron microscopy were employed to determine the average circumradius (15.2 nm) of these vertex-truncated building blocks and their planar superstructure. The resilience and response of the superlattice to pressure variations, peaking at 18.01 GPa, were examined by using synchrotron-based Wide-Angle X-ray Scattering (WAXS) and Small-Angle X-ray Scattering (SAXS) techniques. The WAXS data revealed no phase transitions, reinforcing the stability of the 2D superlattice comprised of random layers in alignment with a p31m planar symmetry as discerned by SAXS. Notably, the SAXS data also unveiled a pressure-induced, irreversible translation of octahedra and ligand interaction occurring within the random layer. Through our examination of these pressure-sensitive behaviors, we identified a distinctive translation model inherent to octahedra and observed modulation in the superlattice cell parameter induced by pressure. This research signifies a noteworthy advancement in deciphering the intricate behaviors of 2D superlattices under high pressure. 
    more » « less
    Free, publicly-accessible full text available March 27, 2025
  2. Free, publicly-accessible full text available April 19, 2025
  3. The microscopic mechanisms underpinning the spontaneous surface passivation of metals from ubiquitous water have remained largely elusive. Here, using in situ environmental electron microscopy to atomically monitor the reaction dynamics between aluminum surfaces and water vapor, we provide direct experimental evidence that the surface passivation results in a bilayer oxide film consisting of a crystalline-like Al(OH)3top layer and an inner layer of amorphous Al2O3. The Al(OH)3layer maintains a constant thickness of ~5.0 Å, while the inner Al2O3layer grows at the Al2O3/Al interface to a limiting thickness. On the basis of experimental data and atomistic modeling, we show the tunability of the dissociation pathways of H2O molecules with the Al, Al2O3, and Al(OH)3surface terminations. The fundamental insights may have practical significance for the design of materials and reactions for two seemingly disparate but fundamentally related disciplines of surface passivation and catalytic H2production from water.

     
    more » « less
    Free, publicly-accessible full text available November 3, 2024
  4. Purpose AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the thermal conductivity of as-built materials as a function of processing (energy density, laser power, laser scanning speed, support structure) and build orientation, are not well explored in the literature. This study aims to elucidate the relationship between processing, microstructure, and thermal conductivity. Design/methodology/approach The thermal conductivity of laser powder bed fusion (L-PBF) AlSi10Mg samples are investigated by the flash diffusivity and frequency domain thermoreflectance (FDTR) techniques. Thermal conductivities are linked to the microstructure of L-PBF AlSi10Mg, which changes with processing conditions. The through-plane exceeded the in-plane thermal conductivity for all energy densities. A co-located thermal conductivity map by frequency domain thermoreflectance (FDTR) and crystallographic grain orientation map by electron backscattered diffraction (EBSD) was used to investigate the effect of microstructure on thermal conductivity. Findings The highest through-plane thermal conductivity (136 ± 2 W/m-K) was achieved at 59 J/mm 3 and exceeded the values reported previously. The in-plane thermal conductivity peaked at 117 ± 2 W/m-K at 50 J/mm 3 . The trend of thermal conductivity reducing with energy density at similar porosity was primarily due to the reduced grain size producing more Al-Si interfaces that pose thermal resistance. At these interfaces, thermal energy must convert from electrons in the aluminum to phonons in the silicon. The co-located thermal conductivity and crystallographic grain orientation maps confirmed that larger colonies of columnar grains have higher thermal conductivity compared to smaller columnar grains. Practical implications The thermal properties of AlSi10Mg are crucial to heat transfer applications including additively manufactured heatsinks, cold plates, vapor chambers, heat pipes, enclosures and heat exchangers. Additionally, thermal-based nondestructive testing methods require these properties for applications such as defect detection and simulation of L-PBF processes. Industrial standards for L-PBF processes and components can use the data for thermal applications. Originality/value To the best of the authors’ knowledge, this paper is the first to make coupled thermal conductivity maps that were matched to microstructure for L-PBF AlSi10Mg aluminum alloy. This was achieved by a unique in-house thermal conductivity mapping setup and relating the data to local SEM EBSD maps. This provides the first conclusive proof that larger grain sizes can achieve higher thermal conductivity for this processing method and material system. This study also shows that control of the solidification can result in higher thermal conductivity. It was also the first to find that the build substrate (with or without support) has a large effect on thermal conductivity. 
    more » « less
  5. This study demonstrates an atomic composition manipulation on Pt–Ni nano-octahedra to enhance their electrocatalytic performance. By selectively extracting Ni atoms from the {111} facets of the Pt–Ni nano-octahedra using gaseous carbon monoxide at an elevated temperature, a Pt-rich shell is formed, resulting in an ∼2 atomic layer Pt-skin. The surface-engineered octahedral nanocatalyst exhibits a significant enhancement in both mass activity (∼1.8-fold) and specific activity (∼2.2-fold) toward the oxygen reduction reaction compared with its unmodified counterpart. After 20,000 potential cycles of durability tests, the surface-etched Pt–Ni nano-octahedral sample shows a mass activity of 1.50 A/mgPt, exceeding the initial mass activity of the unetched counterpart (1.40 A/mgPt) and outperforming the benchmark Pt/C (0.18 A/mgPt) by a factor of 8. DFT calculations predict this improvement with the Pt surface layers and support these experimental observations. This surface-engineering protocol provides a promising strategy for developing novel electrocatalysts with improved catalytic features. 
    more » « less
  6. Abstract

    We present a one‐pot colloidal synthesis method for producing monodisperse multi‐metal (Co, Mn, and Fe) spinel nanocrystals (NCs), including nanocubes, nano‐octahedra, and concave nanocubes. This study explores the mechanism of morphology control, showcasing the pivotal roles of metal precursors and capping ligands in determining the exposed crystal planes on the NC surface. The cubic spinel NCs, terminated with exclusive {100}‐facets, demonstrate superior electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media compared to their octahedral and concave cubic counterparts. Specifically, at 0.85 V, (CoMn)Fe2O4spinel oxide nanocubes achieve a high mass activity of 23.9 A/g and exhibit excellent stability, highlighting the promising ORR performance associated with {100}‐facets of multi‐metal spinel oxides over other low‐index and high‐index facets. Motivated by exploring the correlation between ORR performance and surface atom arrangement (active sites), surface element composition, as well as other factors, this study introduces a prospective approach for shape‐controlled synthesis of advanced spinel oxide NCs. It underscores the significance of catalyst shape control and suggests potential applications as nonprecious metal ORR electrocatalysts.

     
    more » « less
  7. Despite the well-known tendency for many alloys to undergo ordering transformations, the microscopic mechanism of ordering and its dependence on alloy composition remains largely unknown. Using the example of Pt 85 Fe 15 and Pt 65 Fe 35 alloy nanoparticles (NPs), herein we demonstrate the composition-dependent ordering processes on the single-particle level, where the nanoscale size effect allows for close interplay between surface and bulk in controlling the phase evolution. Using in situ electron microscopy observations, we show that the ordering transformation in Pt 85 Fe 15 NPs during vacuum annealing occurs via the surface nucleation and growth of L1 2 -ordered Pt 3 Fe domains that propagate into the bulk, followed by the self-sacrifice transformation of the surface region of the L1 2 Pt 3 Fe into a Pt skin. By contrast, the ordering in Pt 65 Fe 35 NPs proceeds via an interface mechanism by which the rapid formation of an L1 0 PtFe skin occurs on the NPs and the transformation boundary moves inward along with outward Pt diffusion. Although both the “nucleation and growth” and the “interface” mechanisms result in a core–shell configuration with a thin Pt-rich skin, Pt 85 Fe 15 NPs have an L1 2 Pt 3 Fe core, whereas Pt 65 Fe 35 NPs are composed of an L1 0 PtFe core. Using atomistic modeling, we identify the composition-dependent vacancy-assisted counterdiffusion of Pt and Fe atoms between the surface and core regions in controlling the ordering transformation pathway. This vacancy-assisted diffusion is further demonstrated by oxygen annealing, for which the selective oxidation of Fe results in a large number of Fe vacancies and thereby greatly accelerates the transformation kinetics. 
    more » « less