Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 22, 2025
-
Free, publicly-accessible full text available May 22, 2025
-
Free, publicly-accessible full text available March 1, 2025
-
Abstract Price bubbles in multiple assets are sometimes nearly coincident in occurrence. Such near-coincidence is strongly suggestive of co-movement in the associated asset prices and is likely driven by certain factors that are latent in the financial or economic system with common effects across several markets. Can we detect the presence of such common factors at the early stages of their emergence? To answer this question, we build a factor model that includes I(1), mildly explosive, and stationary factors to capture normal, exuberant, and collapsing phases in such phenomena. The I(1) factor models the primary driving force of market fundamentals. The explosive and stationary factors model latent forces that underlie the formation and destruction of asset price bubbles, which typically exist only for subperiods of the sample. The article provides an algorithm for testing the presence of and date-stamping the origination and termination of price bubbles determined by latent factors in a large-dimensional system embodying many markets. Asymptotics of the bubble test statistic are given under the null of no common bubbles and the alternative of a common bubble across these markets. We prove the consistency of a factor bubble detection process for the origination and termination dates of the common bubble. Simulations show good finite sample performance of the testing algorithm in terms of its successful detection rates. Our methods are applied to real estate markets covering eighty-nine major cities in China over the period January 2005 to December 2008. Results suggest the presence of a common bubble episode in what are known as China’s Tier 1 and Tier 2 cities from June 2007 to February 2008. There is also a common bubble episode in Tier 3 cities but of shorter duration.
-
Particle–wall interactions have broad biological and technological applications. In particular, some artificial microswimmers capitalize on their translation–rotation coupling near a wall to generate directed propulsion. Emerging biomedical applications of these microswimmers in complex biological fluids prompt questions on the impact of non-Newtonian rheology on their propulsion. In this work, we report some intriguing effects of shear-thinning rheology, a ubiquitous non-Newtonian behaviour of biological fluids, on the translation–rotation coupling of a particle near a wall. One particularly interesting feature revealed here is that the wall-induced translation by rotation can occur in a direction opposite to what might be intuitively expected for an object rolling on a solid substrate. We elucidate the underlying physical mechanism and discuss its implications on the design of micromachines and bacterial motion near walls in complex fluids.more » « less
-
null (Ed.)Some micro-organisms and artificial micro-swimmers propel at low Reynolds numbers (Re) via the interaction of their flexible appendages with the surrounding fluid. While their locomotion has been extensively studied with a Newtonian fluid assumption, in realistic biological environments these micro-swimmers invariably encounter rheologically complex fluids. In particular, many biological fluids such as blood and different types of mucus have shear-thinning viscosities. The influence of this ubiquitous non-Newtonian rheology on the performance of flexible swimmers remains largely unknown. Here, we present a first study to examine how shear-thinning rheology alters the fluid-structure interaction and hence the propulsion performance of elastic swimmers at low Re. Via a simple elastic swimmer actuated magnetically, we demonstrate that shear-thinning rheology can either enhance or hinder elastohydrodynamic propulsion, depending on the intricate interplay between elastic and viscous forces as well as the magnetic actuation. We also use a reduced-order model to elucidate the mechanisms underlying the enhanced and hindered propulsion observed in different physical regimes. These results and improved understanding could guide the design of flexible micro-swimmers in non-Newtonian fluids.more » « less
-
Medical micro/nanorobots have received tremendous attention over the past decades owing to their potential to be navigated into hard-to-reach tissues for a number of biomedical applications ranging from targeted drug/gene delivery, bio-isolation, detoxification, to nanosurgery. Despite the great promise, the majority of the past demonstrations are primarily under benchtop or in vitro conditions. Many developed micro/nanoscale propulsion mechanisms are based on the assumption of a homogeneous, Newtonian environment, while realistic biological environments are substantially more complex. Moving toward practical medical use, the field of micro/nanorobotics must overcome several major challenges including propulsion through complex media (such as blood, mucus, and vitreous) as well as deep tissue imaging and control in vivo . In this review article, we summarize the recent research efforts on investigating how various complexities in biological environments impact the propulsion of micro/nanoswimmers. We also highlight the emerging technological approaches to enhance the locomotion of micro/nanorobots in complex environments. The recent demonstrations of in vivo imaging, control and therapeutic medical applications of such micro/nanorobots are introduced. We envision that continuing materials and technological innovations through interdisciplinary collaborative efforts can bring us steps closer to the fantasy of “swallowing a surgeon”.more » « less