- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
02100000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Yilan (3)
-
Weng, Tsui-Wei (2)
-
Chang, Keng-Chi (1)
-
Chatha, Arjun (1)
-
Huang, Wei (1)
-
Lee, Justin (1)
-
Loh, Charlotte (1)
-
Marden, Jason R. (1)
-
Nguyen, Lam (1)
-
Ochoa, Daniel E. (1)
-
Oikarinen, Tuomas (1)
-
Poveda, Jorge I. (1)
-
Srivastava, Akash (1)
-
Wang, Hao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent advances have greatly increased the capabilities of large language models (LLMs), but our understanding of the models and their safety has not progressed as fast. In this paper we aim to understand LLMs deeper by studying their individual neurons. We build upon previous work showing large language models such as GPT-4 can be useful in explaining what each neuron in a language model does. Specifically, we analyze the effect of the prompt used to generate explanations and show that reformatting the explanation prompt in a more natural way can significantly improve neuron explanation quality and greatly reduce computational cost. We demonstrate the effects of our new prompts in three different ways, incorporating both automated and human evaluations.more » « less
-
Chen, Yilan ; Huang, Wei ; Wang, Hao ; Loh, Charlotte ; Srivastava, Akash ; Nguyen, Lam ; Weng, Tsui-Wei ( , NeurIPS 2023)Deep neural networks have been increasingly used in real-world applications, making it critical to ensure their ability to adapt to new, unseen data. In this paper, we study the generalization capability of neural networks trained with (stochastic) gradient flow. We establish a new connection between the loss dynamics of gradient flow and general kernel machines by proposing a new kernel, called loss path kernel. This kernel measures the similarity between two data points by evaluating the agreement between loss gradients along the path determined by the gradient flow. Based on this connection, we derive a new generalization upper bound that applies to general neural network architectures. This new bound is tight and strongly correlated with the true generalization error. We apply our results to guide the design of neural architecture search (NAS) and demonstrate favorable performance compared with state-of-the-art NAS algorithms through numerical experiments.more » « less
-
Chen, Yilan ; Ochoa, Daniel E. ; Marden, Jason R. ; Poveda, Jorge I. ( , American Control Conference)