skip to main content

Search for: All records

Creators/Authors contains: "Chen, Yuzhou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wooldridge, Michael (Ed.)
    Learning time-evolving objects such as multivariate time series and dynamic networks requires the development of novel knowledge representation mechanisms and neural network architectures, which allow for capturing implicit timedependent information contained in the data. Such information is typically not directly observed but plays a key role in the learning task performance. In turn, lack of time dimension in knowledge encoding mechanisms for time-dependent data leads to frequent model updates, poor learning performance, and, as a result, subpar decision-making. Here we propose a new approach to a time-aware knowledge representation mechanism that notably focuses on implicit timedependent topological information along multiple geometric dimensions. In particular, we propose a new approach, named Temporal MultiPersistence (TMP), which produces multidimensional topological fingerprints of the data by using the existing single parameter topological summaries. The main idea behind TMP is to merge the two newest directions in topological representation learning, that is, multi-persistence which simultaneously describes data shape evolution along multiple key parameters, and zigzag persistence to enable us to extract the most salient data shape information over time.We derive theoretical guarantees of TMP vectorizations and show its utility, in application to forecasting on benchmark traffic flow, Ethereum blockchain, and electrocardiogram datasets, demonstrating the competitive performance, especially, in scenarios of limited data records. In addition, our TMP method improves the computational efficiency of the state-of-the-art multipersistence summaries up to 59.5 times. 
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Networks allow us to describe a wide range of interaction phenomena that occur in complex systems arising in such diverse fields of knowledge as neuroscience, engineering, ecology, finance, and social sciences. Until very recently, the primary focus of network models and tools has been on describing the pairwise relationships between system entities. However, increasingly more studies indicate that polyadic or higher-order group relationships among multiple network entities may be the key toward better understanding of the intrinsic mechanisms behind the functionality of complex systems. Such group interactions can be, in turn, described in a holistic manner by simplicial complexes of graphs. Inspired by these recently emerging results on the utility of the simplicial geometry of complex networks for contagion propagation and armed with a large-scale synthetic social contact network (also known as a digital twin) of the population in the U.S. state of Virginia, in this paper, we aim to glean insights into the role of higher-order social interactions and the associated varying social group determinants on COVID-19 propagation and mitigation measures.

    more » « less
    Free, publicly-accessible full text available January 2, 2025
  3. Lawrence, Neil (Ed.)
    Topological data analysis (TDA) is gaining prominence across a wide spectrum of machine learning tasks that spans from manifold learning to graph classification. A pivotal technique within TDA is persistent homology (PH), which furnishes an exclusive topological imprint of data by tracing the evolution of latent structures as a scale parameter changes. Present PH tools are confined to analyzing data through a single filter parameter. However, many scenarios necessitate the consideration of multiple relevant parameters to attain finer insights into the data. We address this issue by introducing the Effective Multidimensional Persistence (EMP) framework. This framework empowers the exploration of data by simultaneously varying multiple scale parameters. The framework integrates descriptor functions into the analysis process, yielding a highly expressive data summary. It seamlessly integrates established single PH summaries into multidimensional counterparts like EMP Landscapes, Silhouettes, Images, and Surfaces. These summaries represent data’s multidimensional aspects as matrices and arrays, aligning effectively with diverse ML models. We provide theoretical guarantees and stability proofs for EMP summaries. We demonstrate EMP’s utility in graph classification tasks, showing its effectiveness. Results reveal EMP enhances various single PH descriptors, outperforming cutting-edge methods on multiple benchmark datasets. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  4. Graph neural networks (GNNs) have demonstrated a significant success in various graph learning tasks, from graph classification to anomaly detection. There recently has emerged a number of approaches adopting a graph pooling operation within GNNs, with a goal to preserve graph attributive and structural features during the graph representation learning. However, most existing graph pooling operations suffer from the limitations of relying on node-wise neighbor weighting and embedding, which leads to insufficient encoding of rich topological structures and node attributes exhibited by real-world networks. By invoking the machinery of persistent homology and the concept of landmarks, we propose a novel topological pooling layer and witness complex-based topological embedding mechanism that allow us to systematically integrate hidden topological information at both local and global levels. Specifically, we design new learnable local and global topological representations Wit-TopoPool which allow us to simultaneously extract rich discriminative topological information from graphs. Experiments on 11 diverse benchmark datasets against 18 baseline models in conjunction with graph classification tasks indicate that Wit-TopoPool significantly outperforms all competitors across all datasets.

    more » « less
    Free, publicly-accessible full text available June 27, 2024
  5. Free, publicly-accessible full text available June 27, 2024
  6. Free, publicly-accessible full text available June 27, 2024
  7. Free, publicly-accessible full text available June 25, 2024
  8. Efficient multi-robot task allocation (MRTA) is fundamental to various time-sensitive applications such as disaster response, warehouse operations, and construction. This paper tackles a particular class of these problems that we call MRTA-collective transport or MRTA-CT – here tasks present varying workloads and deadlines, and robots are subject to flight range, communication range, and payload constraints. For large instances of these problems involving 100s-1000’s of tasks and 10s-100s of robots, traditional non-learning solvers are often time-inefficient, and emerging learning-based policies do not scale well to larger-sized problems without costly retraining. To address this gap, we use a recently proposed encoder-decoder graph neural network involving Capsule networks and multi-head attention mechanism, and innovatively add topological descriptors (TD) as new features to improve transferability to unseen problems of similar and larger size. Persistent homology is used to derive the TD, and proximal policy optimization is used to train our TD-augmented graph neural network. The resulting policy model compares favorably to state-of-the-art non-learning baselines while being much faster. The benefit of using TD is readily evident when scaling to test problems of size larger than those used in training. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024