We present COSBO-7, a strong millimeter source known for more than 16 yr that just revealed its near-to-mid-IR counterpart with the James Webb Space Telescope (JWST). The precise pinpointing by the Atacama Large Millimeter/submillimeter Array on the exquisite NIRCam and MIRI images show that it is a background source gravitationally lensed by a single foreground galaxy, and the analysis of its spectral energy distribution by different tools is in favor of photometric redshift at
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract z ph> 7. Strikingly, our lens modeling based on the JWST data shows that it has a regular disk morphology in the source plane. The dusty region giving rise to the far-IR-to-millimeter emission seems to be confined to a limited region to one side of the disk and has a high dust temperature of >90 K. The galaxy is experiencing starburst both within and outside of this dusty region. After taking the lensing magnification ofμ ≈ 2.5–3.6 into account, the intrinsic star formation rate is several hundredM ⊙yr−1both within the dusty region and across the more extended stellar disk, and the latter already has >1010M ⊙of stars in place. If it is indeed atz > 7, COSBO-7 presents an extraordinary case that is against the common wisdom about galaxy formation in the early Universe; simply put, its existence poses a critical question to be answered: how could a massive disk galaxy come into being so early in the Universe and sustain its regular morphology in the middle of an enormous starburst?Free, publicly-accessible full text available July 1, 2025 -
Free, publicly-accessible full text available June 6, 2025
-
Free, publicly-accessible full text available June 6, 2025
-
Glacial-marine sediments from the Antarctic continental margin provide a record of depositional environment, oceanographic variability and ice dynamics that is tapped with scientific ocean drilling. This study focuses on Ocean Drilling Program Core 693A-2R, a 9.7 m sediment core retrieved from near the continental margin of the Archean Grunehogna Craton in Dronning Maud Land (DML), East Antarctica. The results contribute to a better understanding of ice-shelf behavior in DML during the mid-Pleistocene transition (MPT), a well-known transition from 40-kyr to 100-kyr cycle periods. The age model, constructed based on Sr isotope stratigraphy and geomagnetic reversals, indicates that the core spans 1.20 to 0.65 Ma. The dynamic behavior of DML ice shelves with periodic iceberg calving is revealed by the glacial–interglacial variation in sedimentation patterns, with interglacials characterized by higher concentrations of ice-rafted debris (IRD) associated with enhanced paleo- productivity than glacial intervals. The responses of DML ice shelves to warm climates are represented by a prolonged interglacial period at 1.0–1.1 Ma (MIS 31–27) and significant interglacial expressions during MIS 19 and 17. The 40Ar/39Ar ages of individual ice-rafted hornblende grains are compared with the on-land geology of DML and neighboring regions to determine the provenances of IRD. Specifically, 40Ar/39Ar results record pri- marily late Neoproterozoic to Cambrian ages (600–400 Ma) with a predominant peak of 520–480 Ma. This Pan- African/Ross orogeny signature is very common in East Antarctica but is not found in the most proximal margin of the Grunehogna Craton, and is instead associated with the region of DML several hundred kilometers east of the deposition site. This indicates that significant discharges of icebergs occurred in the remote DML, which were then transported by the westward-flowing Antarctic Coastal Current to deposit IRD at the studied site during the MPT. This study establishes a confirmed MPT sedimentary sequence off DML, against which future MPT proxy records from the Weddell Sea embayment and other sectors in Antarctica can be compared and correlated, and provides a basis for more detailed analyses of the response of DML ice sheet to Pleistocene climate variations.more » « less
-
Abstract We utilize deep JWST Near Infrared Camera (NIRCam) observations for the first direct constraints on the Galaxy Stellar Mass Function (GSMF) at
z > 10. Our EPOCHS v1 sample includes 1120 galaxy candidates at 6.5 <z < 13.5 taken from a consistent reduction and analysis of publicly available deep JWST NIRCam data covering the Prime Extragalactic Areas for Reionization Science, CEERS, GLASS, JADES GOOD-S, NGDEEP, and SMACS0723 surveys, totaling 187 arcmin2. We investigate the impact of spectral energy distribution fitting methods, assumed star formation histories (SFHs), dust laws, and priors on galaxy masses and the resultant GSMF. While our fiducial GSMF agrees with the literature atz < 13.5, we find that the assumed SFH model has a large impact on the GSMF and stellar mass density (SMD), finding a 0.75 dex increase in the SMD atz = 10.5 between a flexible nonparametric and standard parametric SFH. Overall, we find a flatter SMD evolution atz ≥ 9 than some studies predict, suggesting a rapid buildup of stellar mass in the early Universe. We find no incompatibility between our results and those of standard cosmological models, as suggested previously, although the most massive galaxies may require a high star formation efficiency. We find that the “little red dot” galaxies dominate thez = 7 GSMF at high masses, necessitating a better understanding of the relative contributions of active galactic nucleus and stellar emission. We show that assuming a theoretically motivated top-heavy initial mass function (IMF) reduces stellar mass by 0.5 dex without affecting fit quality, but our results remain consistent with existing cosmological models with a standard IMF. -
Abstract We present a new parametric lens model for the G165.7+67.0 galaxy cluster, which was discovered with Planck through its bright submillimeter flux, originating from a pair of extraordinary dusty star-forming galaxies (DSFGs) at
z ≈ 2.2. Using JWST and interferometric mm/radio observations, we characterize the intrinsic physical properties of the DSFGs, which are separated by only ∼1″ (8 kpc) and a velocity difference ΔV ≲ 600 km s−1in the source plane, and thus are likely undergoing a major merger. Boasting intrinsic star formation rates SFRIR= 320 ± 70 and 400 ± 80M ⊙yr−1, stellar masses of and 10.3 ± 0.1, and dust attenuations ofA V = 1.5 ± 0.3 and 1.2 ± 0.3, they are remarkably similar objects. We perform spatially resolved pixel-by-pixel spectral energy distribution (SED) fitting using rest-frame near-UV to near-IR imaging from JWST/NIRCam for both galaxies, resolving some stellar structures down to 100 pc scales. Based on their resolved specific star formation rates (SFRs) andUVJ colors, both DSFGs are experiencing significant galaxy-scale star formation events. If they are indeed interacting gravitationally, this strong starburst could be the hallmark of gas that has been disrupted by an initial close passage. In contrast, the host galaxy of SN H0pe has a much lower SFR than the DSFGs, and we present evidence for the onset of inside-out quenching and large column densities of dust even in regions of low specific SFR. Based on the intrinsic SFRs of the DSFGs inferred from UV through far-infrared SED modeling, this pair of objects alone is predicted to yield an observable 1.1 ± 0.2 core-collapse supernovae per year, making this cluster field ripe for continued monitoring.Free, publicly-accessible full text available September 1, 2025 -
Abstract The Prime Extragalactic Areas for Reionization and Lensing Science, a James Webb Space Telescope (JWST) GTO program, obtained a set of unique NIRCam observations that have enabled us to significantly improve the default photometric calibration across both NIRCam modules. The observations consisted of three epochs of 4-band (F150W, F200W, F356W, and F444W) NIRCam imaging in the Spitzer IRAC Dark Field (IDF). The three epochs were six months apart and spanned the full duration of Cycle 1. As the IDF is in the JWST continuous viewing zone, we were able to design the observations such that the two modules of NIRCam, modules A and B, were flipped by 180° and completely overlapped each other’s footprints in alternate epochs. We were therefore able to directly compare the photometry of the same objects observed with different modules and detectors, and we found significant photometric residuals up to ∼0.05 mag in some detectors and filters, for the default version of the calibration files that we used (
jwst _1039.pmap ). Moreover, there are multiplicative gradients present in the data obtained in the two long-wavelength bands. The problem is less severe in the data reduced using the latest pmap (jwst _1130.pmap as of 2023 September), but it is still present, and is non-negligible. We provide a recipe to correct for this systematic effect to bring the two modules onto a more consistent calibration, to a photometric precision better than ∼0.02 mag. -
Direct-collapse black holes (DCBHs) of mass ∼104 − 105
M ⊙that form in HI-cooling halos in the early Universe are promising progenitors of the ≳109M ⊙supermassive black holes that fuel observedz ≳ 7 quasars. Efficient accretion of the surrounding gas onto such DCBH seeds may render them sufficiently bright for detection with the JWST up toz ≈ 20. Additionally, the very steep and red spectral slope predicted across the ≈1 − 5 μm wavelength range of the JWST/NIRSpec instrument during their initial growth phase should make them photometrically identifiable up to very high redshifts. In this work, we present a search for such DCBH candidates across the 34 arcmin2in the first two spokes of the JWST cycle-1 PEARLS survey of the north ecliptic pole time-domain field covering eight NIRCam filters down to a maximum depth of ∼29 AB mag. We identify two objects with spectral energy distributions consistent with theoretical DCBH models. However, we also note that even with data in eight NIRCam filters, objects of this type remain degenerate with dusty galaxies and obscured active galactic nuclei over a wide range of redshifts. Follow-up spectroscopy would be required to pin down the nature of these objects. Based on our sample of DCBH candidates and assumptions on the typical duration of the DCBH steep-slope state, we set a conservative upper limit of ≲5 × 10−4comoving Mpc−3(cMpc−3) on the comoving density of host halos capable of hosting DCBHs with spectral energy distributions similar to the theoretical models atz ≈ 6 − 14.Free, publicly-accessible full text available March 1, 2025 -
Abstract With its unprecedented sensitivity and spatial resolution, the James Webb Space Telescope (JWST) has opened a new window for time-domain discoveries in the infrared. Here we report observations in the only field that has received four epochs (spanning 126 days) of JWST NIRCam observations in Cycle 1. This field is toward MACS J0416.1−2403, which is a rich galaxy cluster at redshift
z = 0.4 and is one of the Hubble Frontier Fields. We have discovered 14 transients from these data. Twelve of these transients happened in three galaxies (withz = 0.94, 1.01, and 2.091) crossing a lensing caustic of the cluster, and these transients are highly magnified by gravitational lensing. These 12 transients are likely of a similar nature to those previously reported based on the Hubble Space Telescope (HST) data in this field, i.e., individual stars in the highly magnified arcs. However, these 12 could not have been found by HST because they were too red and too faint. The other two transients are associated with background galaxies (z = 2.205 and 0.7093) that are only moderately magnified, and they are likely supernovae. They indicate a demagnified supernova surface density, when monitored at a time cadence of a few months to a ∼3–4μ m survey limit of AB ∼28.5 mag, of ∼0.5 arcmin−2integrated toz ≈ 2. This survey depth is beyond the capability of HST but can be easily reached by JWST.