skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Birds of a Feather: Resolving Stellar Mass Assembly with JWST/NIRCam in a Pair of Kindred z ∼ 2 Dusty Star-forming Galaxies Lensed by the PLCK G165.7+67.0 Cluster
Abstract We present a new parametric lens model for the G165.7+67.0 galaxy cluster, which was discovered with Planck through its bright submillimeter flux, originating from a pair of extraordinary dusty star-forming galaxies (DSFGs) atz≈ 2.2. Using JWST and interferometric mm/radio observations, we characterize the intrinsic physical properties of the DSFGs, which are separated by only ∼1″ (8 kpc) and a velocity difference ΔV≲ 600 km s−1in the source plane, and thus are likely undergoing a major merger. Boasting intrinsic star formation rates SFRIR= 320 ± 70 and 400 ± 80Myr−1, stellar masses of log [ M / M ] = 10.2 ± 0.1 and 10.3 ± 0.1, and dust attenuations ofAV= 1.5 ± 0.3 and 1.2 ± 0.3, they are remarkably similar objects. We perform spatially resolved pixel-by-pixel spectral energy distribution (SED) fitting using rest-frame near-UV to near-IR imaging from JWST/NIRCam for both galaxies, resolving some stellar structures down to 100 pc scales. Based on their resolved specific star formation rates (SFRs) andUVJcolors, both DSFGs are experiencing significant galaxy-scale star formation events. If they are indeed interacting gravitationally, this strong starburst could be the hallmark of gas that has been disrupted by an initial close passage. In contrast, the host galaxy of SN H0pe has a much lower SFR than the DSFGs, and we present evidence for the onset of inside-out quenching and large column densities of dust even in regions of low specific SFR. Based on the intrinsic SFRs of the DSFGs inferred from UV through far-infrared SED modeling, this pair of objects alone is predicted to yield an observable 1.1 ± 0.2 core-collapse supernovae per year, making this cluster field ripe for continued monitoring.  more » « less
Award ID(s):
2307877
PAR ID:
10561224
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
973
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a stringent measurement of the dust-obscured star formation rate density (SFRD) atz= 4–6 from the ASPIRE JWST Cycle-1 medium and ALMA Cycle-9 large program. We obtained JWST/NIRCam grism spectroscopy and ALMA 1.2 mm continuum map along 25 independent quasar sightlines, covering a total survey area of  ∼35 arcmin2where we search for dusty star-forming galaxies (DSFGs) atz= 0–7. We identify eight DSFGs in seven fields atz= 4–6 through the detection of Hαor [O iii]λ5008 lines, including fainter lines such as Hβ, [O iii]λ4960, [N ii]λ6585, and [S ii]λλ6718,6733 for six sources. With this spectroscopically complete DSFG sample atz= 4–6 and negligible impact from cosmic variance (shot noise), we measure the infrared luminosity function (IRLF) down toLIR ∼ 2 × 1011L. We find flattening of IRLF atz= 4–6 towards the faint end (power-law slope α = 0.5 9 0.45 + 0.39 ). We determine the dust-obscured cosmic SFRD at this epoch to be log [ ρ SFR , IR / ( M yr 1 Mpc 3 ) ] = 1.5 2 0.13 + 0.14 . This is significantly higher than previous determinations using ALMA data in the Hubble Ultra Deep Field, which is void of DSFGs atz= 4–6 because of strong cosmic variance (shot noise). We conclude that the majority (66% ± 7%) of cosmic star formation atz ∼ 5 is still obscured by dust. We also discuss the uncertainty of SFRD propagated from far-IR spectral energy distribution and IRLF at the bright end, which will need to be resolved with future ALMA and JWST observations. 
    more » « less
  2. Abstract We investigate galactic winds in the HizEA galaxies, a collection of 46 late-stage galaxy mergers atz= 0.4–0.8, with stellar masses of log ( M * / M ) = 10.4 11.5 , star formation rates (SFRs) of 20–500Myr−1, and ultra-compact (a few 100 pc) central star-forming regions. We measure their gas kinematics using the Mgiiλλ2796,2803 absorption lines in optical spectra from MMT, Magellan, and Keck. We find evidence of outflows in 90% of targets, with maximum outflow velocities of 550–3200 km s−1. We combine these data with ten samples from the literature to construct scaling relations for outflow velocity versus SFR, star formation surface density (ΣSFR),M*, and SFR/M*. The HizEA galaxies extend the dynamic range of the scaling relations by a factor of ∼2–4 in outflow velocity and an order of magnitude in SFR and ΣSFR. The ensemble scaling relations exhibit strong correlations between outflow velocity, SFR, SFR/R, and ΣSFR, and weaker correlations withM*and SFR/M*. The HizEA galaxies are mild outliers on the SFR andM*scaling relations, but they connect smoothly with more typical star-forming galaxies on plots of outflow velocity versus SFR/Rand ΣSFR. These results provide further evidence that the HizEA galaxies’ exceptional outflow velocities are a consequence of their extreme star formation conditions rather than hidden black hole activity, and they strengthen previous claims that ΣSFRis one of the most important properties governing the velocities of galactic winds. 
    more » « less
  3. Abstract We present the characteristics of 2 mm selected sources from the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey conducted to date, the Mapping Obscuration to Reionization with ALMA (MORA) survey covering 184 arcmin2at 2 mm. Twelve of 13 detections above 5σare attributed to emission from galaxies, 11 of which are dominated by cold dust emission. These sources have a median redshift of z 2 mm = 3.6 0.3 + 0.4 primarily based on optical/near-infrared photometric redshifts with some spectroscopic redshifts, with 77% ± 11% of sources atz> 3 and 38% ± 12% of sources atz> 4. This implies that 2 mm selection is an efficient method for identifying the highest-redshift dusty star-forming galaxies (DSFGs). Lower-redshift DSFGs (z< 3) are far more numerous than those atz> 3 yet are likely to drop out at 2 mm. MORA shows that DSFGs with star formation rates in excess of 300Myr−1and a relative rarity of ∼10−5Mpc−3contribute ∼30% to the integrated star formation rate density at 3 <z< 6. The volume density of 2 mm selected DSFGs is consistent with predictions from some cosmological simulations and is similar to the volume density of their hypothesized descendants: massive, quiescent galaxies atz> 2. Analysis of MORA sources’ spectral energy distributions hint at steeper empirically measured dust emissivity indices than reported in typical literature studies, with β = 2.2 0.4 + 0.5 . The MORA survey represents an important step in taking census of obscured star formation in the universe’s first few billion years, but larger area 2 mm surveys are needed to more fully characterize this rare population and push to the detection of the universe’s first dusty galaxies. 
    more » « less
  4. Abstract We present a strong lensing analysis of COOL J1241+2219, the brightest known gravitationally lensed galaxy atz≥ 5, based on new multiband Hubble Space Telescope (HST) imaging data. The lensed galaxy has a redshift ofz= 5.043, placing it shortly after the end of the “Epoch of Reionization,” and an AB magnitudezAB= 20.47 mag (Khullar et al.). As such, it serves as a touchstone for future research of that epoch. The high spatial resolution of HST reveals internal structure in the giant arc, from which we identify 15 constraints and construct a robust lens model. We use the lens model to extract the cluster mass and lensing magnification. We find that the mass enclosed within the Einstein radius of thez= 1.001 cluster lens is M ( < 5 .″ 77 ) = 1.079 0.007 + 0.023 × 10 13 M , significantly lower than other known strong lensing clusters at its redshift. The average magnification of the giant arc is 〈μarc〉 = 76 20 + 40 , a factor of 2.4 0.7 + 1.4 greater than previously estimated from ground-based data; the flux-weighted average magnification is 〈μarc〉 = 92 31 + 37 . We update the current measurements of the stellar mass and star formation rate (SFR) of the source for the revised magnification to log ( M / M ) = 9.7 ± 0.3 and SFR = 10.3 4.4 + 7.0 Myr−1, respectively. The powerful lensing magnification acting upon COOL J1241+2219 resolves the source and enables future studies of the properties of its star formation on a clump-by-clump basis. The lensing analysis presented here will support upcoming multiwavelength characterization with HST and JWST data of the stellar mass assembly and physical properties of this high-redshift lensed galaxy. 
    more » « less
  5. Abstract We analyze pre-explosion near- and mid-infrared (IR) imaging of the site of SN 2023ixf in the nearby spiral galaxy M101 and characterize the candidate progenitor star. The star displays compelling evidence of variability with a possible period of ≈1000 days and an amplitude of Δm≈ 0.6 mag in extensive monitoring with the Spitzer Space Telescope since 2004, likely indicative of radial pulsations. Variability consistent with this period is also seen in the near-IRJandKsbands between 2010 and 2023, up to just 10 days before the explosion. Beyond the periodic variability, we do not find evidence for any IR-bright pre-supernova outbursts in this time period. The IR brightness ( M K s = 10.7 mag) and color (J−Ks= 1.6 mag) of the star suggest a luminous and dusty red supergiant. Modeling of the phase-averaged spectral energy distribution (SED) yields constraints on the stellar temperature ( T eff = 3500 1400 + 800 K) and luminosity ( log L / L = 5.1 ± 0.2 ). This places the candidate among the most luminous Type II supernova progenitors with direct imaging constraints, with the caveat that many of these rely only on optical measurements. Comparison with stellar evolution models gives an initial mass ofMinit= 17 ± 4M. We estimate the pre-supernova mass-loss rate of the star between 3 and 19 yr before explosion from the SED modeling at M ̇ 3 × 10 5 to 3 × 10−4Myr−1for an assumed wind velocity ofvw= 10 km s−1, perhaps pointing to enhanced mass loss in a pulsation-driven wind. 
    more » « less