skip to main content

Search for: All records

Creators/Authors contains: "Chicken, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this paper, we consider sequentially estimating the density of univariate data. We utilize Pólya trees to develop a statistical process control (SPC) methodology. Our proposed methodology monitors the distribution of the sequentially observed data and detects when the generating density differs from an in‐control standard. We also propose an approximation that merges the probability mass of multiple possible changepoints to curb computational complexity while maintaining the accuracy of the monitoring procedure. We show in simulation experiments that our approach is capable of quickly detecting when a changepoint has occurred while controlling the number of false alarms, and performs well relative to competing methods. We then use our methodology to detect changepoints in high‐frequency foreign exchange (Forex) return data.

    more » « less