We first provide a stochastic formula for the Carathéodory distance in terms of general Markovian couplings and prove a comparison result between the Carathéodory distance and the complete Kähler metric with a negative lower curvature bound using the Kendall–Cranston coupling. This probabilistic approach gives a version of the Schwarz lemma on complete noncompact Kähler manifolds with a further decomposition Ricci curvature into the orthogonal Ricci curvature and the holomorphic sectional curvature, which cannot be obtained by using Yau–Royden's Schwarz lemma. We also prove coupling estimates on quaternionic Kähler manifolds. As a by‐product, we obtain an improved gradient estimate of positive harmonic functions on Kähler manifolds and quaternionic Kähler manifolds under lower curvature bounds.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
00000040000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Cho, Gunhee (4)
-
Baudoin, Fabrice (3)
-
Yang, Guang (2)
-
Chae, Myeongju (1)
-
Gordina, Maria (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Baudoin, Fabrice ; Cho, Gunhee ; Yang, Guang ( , Electronic Communications in Probability)
-
Baudoin, Fabrice ; Cho, Gunhee ( , Symmetry, Integrability and Geometry: Methods and Applications)null (Ed.)In this note, we study the sub-Laplacian of the 15-dimensional octonionic anti-de Sitter space which is obtained by lifting with respect to the anti-de Sitter fibration the Laplacian of the octonionic hyperbolic space OH1. We also obtain two integral representations for the corresponding subelliptic heat kernel.more » « less
-
Baudoin, Fabrice ; Cho, Gunhee ( , Potential Analysis)null (Ed.)We study the sub-Laplacian of the 15-dimensional unit sphere which is obtained by lifting with respect to the Hopf fibration the Laplacian of the octonionic projective space. We obtain in particular explicit formulas for its heat kernel and deduce an expression for the Green function of a related sub-Laplacian. As a byproduct we also obtain the spectrum of the sub-Laplacian, the small-time asymptotics of the heat kernel and explicitly compute the sub-Riemannian distance.more » « less