skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A note on first eigenvalue estimates by coupling methods in Kähler and quaternion Kähler manifolds
Award ID(s):
1901315
PAR ID:
10336345
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Electronic Communications in Probability
Volume:
27
ISSN:
1083-589X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
  3. Abstract Let M be a complete Riemannian manifold and suppose {p\in M} . For each unit vector {v\in T_{p}M} , the Jacobi operator , {\mathcal{J}_{v}:v^{\perp}\rightarrow v^{\perp}} is the symmetric endomorphism, {\mathcal{J}_{v}(w)=R(w,v)v} . Then p is an isotropic point if there exists a constant {\kappa_{p}\in{\mathbb{R}}} such that {\mathcal{J}_{v}=\kappa_{p}\operatorname{Id}_{v^{\perp}}} for each unit vector {v\in T_{p}M} . If all points are isotropic, then M is said to be isotropic; it is a classical result of Schur that isotropic manifolds of dimension at least 3 have constant sectional curvatures. In this paper we consider almost isotropic manifolds , i.e. manifolds having the property that for each {p\in M} , there exists a constant {\kappa_{p}\in\mathbb{R}} such that the Jacobi operators {\mathcal{J}_{v}} satisfy {\operatorname{rank}({\mathcal{J}_{v}-\kappa_{p}\operatorname{Id}_{v^{\perp}}}% )\leq 1} for each unit vector {v\in T_{p}M} . Our main theorem classifies the almost isotropic simply connected Kähler manifolds, proving that those of dimension {d=2n\geqslant 4} are either isometric to complex projective space or complex hyperbolic space or are totally geodesically foliated by leaves isometric to {{\mathbb{C}}^{n-1}} . 
    more » « less
  4. null (Ed.)
  5. null (Ed.)